Towards holistic energy-efficient vehicle product system design: the case for a penalized continuous End-Of-Life model in the Life Cycle Energy Optimisation methodology

DS 94: Proceedings of the Design Society: 22nd International Conference on Engineering Design (ICED19)

Year: 2019
Editor: Wartzack, Sandro; Schleich, Benjamin; Gon
Author: Bouchouireb, Hamza (1); O'Reilly, Ciar
Series: ICED
Institution: KTH Royal Institute of Technology
Section: Mobility
DOI number: https://doi.org/10.1017/dsi.2019.297
ISSN: 2220-4342

Abstract

The Life Cycle Energy Optimisation (LCEO) methodology aims at finding a design solution that uses a minimum amount of cumulative energy demand over the different phases of the vehicle's life cycle, while complying with a set of functional constraints. This effectively balances trade-offs, and therewith avoids sub-optimal shifting between the energy demand for the cradle-to-production of materials, operation of the vehicle, and end-of-life phases. The present work describes the extension of the LCEO methodology to perform holistic product system optimisation. The constrained design of an automotive component and the design of a subset of the processes which are applied to it during its life cycle are simultaneously optimised to achieve a minimal product system life cycle energy. A subset of the processes of the end-of-life phase of a vehicle?s roof are modeled through a continuous formulation. The roof is modeled as a sandwich structure with its design variables being the material compositions and the thicknesses of the different layers. The results show the applicability of the LCEO methodology to product system design and the use of penalization to ensure solution feasibility.

Keywords: Design for X (DfX), Optimisation, Design methodology, Life cycle energy optimisation, Automotive product system design

Download

Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.