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Abstract: The increasing number of product artifacts (e.g., mechanical or electronic components, software functions, 
documents) confronts small and medium-sized companies with the challenge of assessing change effects. The lack of 
knowledge of artifact relationships causes problems, such as outdated documentation, lack of coordination with affected 
disciplines, or delayed changes. The Design Structure Matrix (DSM) can clearly represent the elements and relationships 
of complex systems. This paper presents an assistance system for intuitive visualization of engineering change effects 
using existing DSM-based methods for complexity management. The implemented algorithms compute graph layouts, 
cluster analyses, and change predictions in the form of change risk, time, and cost. An application example of a 3D-
printed intelligent lamp demonstrates the approach's viability. The paper concludes with a discussion of the benefits and 
future activities. 
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1 Introduction 

As a result of the ongoing digital transformation, small and medium-sized enterprises (SMEs) face increasing complexity 
in developing and managing cyber-physical systems across the entire product lifecycle. Technological change, product 
variety, and process agility are complexity drivers that significantly impact product development goals in terms of time, 
cost, quality, and flexibility (Latos et al., 2018; Vogel and Lasch, 2016). Unknown dependencies among product 
development artifacts have been identified as one of the core problems SMEs face in managing complexity during product 
development. In contrast to large companies with dedicated systems engineering departments, SMEs need more resources 
to document and manage artifact relationships thoroughly. Accordingly, information about such relationships is mostly 
tacit knowledge of product developers. The more complex products become, the less the relationships between artifacts 
are known to the stakeholders involved. With the existence and retrieval of such decision knowledge, the effects of 
technical changes on other artifacts can be predicted. 
The Design Structure Matrix (DSM) is a powerful method for modeling complex technical systems and can represent a 
wide range of information on the structural complexity of products and processes (Browning, 2016; Sinha and de Weck, 
2013; Eppinger and Browning, 2012). Contrary to the creation of detailed system models (e.g., Jacobs et al., 2022), the 
authors of this paper believe that the creation of SysML models for SMEs is too time-consuming and requires an in-depth 
expert knowledge of the system and the modeling language. Therefore, we use a binary DSM as a cost / effort-efficient 
description of a complex system for SMEs. The German research project "Function-oriented complexity management in 
all phases of the product development process" (German acronym: FuPEP) (see acknowledgments) develops an assistance 
system for SMEs that supports product developers in managing complexity during the development process. In particular, 
the assistance system aims to help product developers create an awareness of the relations between relevant product 
artifacts and reflect on the consequences of technical changes. This paper presents an assistance system for intuitive 
visualization of engineering change effects using existing DSM-based methods for complexity management. Section 2 
introduces the related work for assistance systems for complexity management. Based on a previous requirements 
elicitation for an assistance system described in Section 3, the paper presents the software architecture and the adapted 
algorithms for assistance-supported complexity management. We introduce the graphical user interface, which has been 
realized using a gaming engine. This interface uses DSM-based clustering and engineering change management functions 
to generate the results for the visualization. The developed assistance system addresses product and process developers of 
SMEs. To illustrate the DSM-based methods used and the benefits of algorithm-driven complexity management, a 3D-
printed intelligent lamp ("SmartLight") serves as a use case. Finally, the paper concludes in Section 4 with a discussion of 
the benefits and limitations of the assistance system. 

2 Related Work 

Previous studies particularly relate to the visualization of artifact relationships and the comprehensibility of graph-based 
representations of matrices. Tools for complexity management, like Siemens' PLM software, Teamcenter (Herbst and 
Hoffmann, 2018), offer various functionalities to assist product developers during initial design and revision by 
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establishing relationships between different artifacts. However, there is a need to be more intuitive in visualizing and 
analyzing the propagation of changes in complex systems to be more efficient. 
The intuitively understandable representation between artifacts is a success factor for complexity management. In the 
literature, empirical studies exist on DSM-based and graph-based forms of visualization. Jarratt et al. (2004) describe a 
link connection plot, which is also called a Molecular diagram (Sharman and Yassine, 2004) that depicts system elements 
as labeled nodes and relationships as directed edges. Peterson (2015) utilizes DSMs and network analysis to organize and 
cluster complex systems into graphical representations. Tools like Gephi (open source) (Bastian et al., 2009) and Pajek 
(Batagelj and Mrvar, 2004) offer network analysis and visualization capabilities for free non-commercial use. Ghoniem et 
al. (2005) and Keller et al. (2006) compare the readability of design structure matrices and their representation as a random 
2D graph. They define several tasks, like counting the number of incoming or outgoing links or finding a path between 
two nodes. While participants perform these tasks on over 100 graphs with different sizes and densities, the response times 
and error rates are measured. Although the DSM outperforms the graph representation in most tasks, both studies confirm 
that participants perform better on graph representations when the task is related to identifying paths and connectivity in 
the graph topology. This is also confirmed by more recent studies (Okoe et al., 2018). Vessey et al. (1991) present a 
cognitive fit theory between the representation and task types. They compare human information processing performance 
between tabular and graph-based information representations. While tables emphasize symbolic information, graphs 
provide spatial information. Identifying relationships and paths between elements is a spatial task that requires graphs as 
a spatial representation. 

3 The Assistance System 

3.1 Requirements and Architecture 

The present work aims to develop a concept for visualizing the effects of product and process changes using existing DSM 
approaches. The result is an assistance system with a graphical user interface for the complexity management of SMEs. 
The requirements for such an assistance system were surveyed in two German SMEs. The authors collected and prioritized 
30 use cases and 130 assistance system requirements in twelve individual and two group interviews using a structured 
questionnaire. Table 1 provides an overview of the use cases rated as particularly relevant by the product developers for 
using the assistance system. 

Table 1. Most important use cases 

Use Case Description In-Scope? 
UC001 Making dependencies between product development artifacts visible YES 
UC008.a Supporting system function approvals and their communication NO 
UC012.a Artifact information searching capabilities YES 
UC012.b Intuitive graphical information representation YES 
UC012.f Representation of engineering change impacts YES 

 
Requirement UC001 describes the intuitively understandable representation of relationships between artifacts from 
different domains. For example, an artifact represents a function, a document, a product requirement, a physical part, or a 
test case. Such a representation helps to analyze the impact and propagation of changes on other development artifacts. 
Especially, artifacts can be indirectly related to each other through intermediate artifacts. Changes can propagate across 
intermediate artifacts. With growing system complexity, product developers are decreasingly aware of these indirectly 
affected artifacts and benefit from graphical support for their identification. Requirements UC012.a, UC012.b, and 
UC012.f refer to information about artifacts and relations. According to the requirements, developers want to visualize the 
impact of technical changes on other artifacts. Hence, the artifacts affected by a change to an artifact are to be automatically 
identified and displayed to the user. According to the respondents in the companies, it is not necessary to describe the 
specific characteristics of a change impact in detail. Thus, it is sufficient if, for example, the diameter of a borehole is 
changed, and the affected asset thread is displayed to the user. Furthermore, it is not necessary to specify the modified 
geometry of the thread, as existing software tools cover this function. The Scope column indicates whether the assistance 
system's development stage fulfills the individual requirement. A detailed list and description of all use cases and 
requirements elicited was published by Herrmann et al. (2021).  
Figure 1 shows the three-tier assistance system architecture addressing the use cases and requirements. An asset 
administration shell holds all artifact and relationship-related information in the assistance system. It is a standardized 
digital representation of assets and uses submodels, submodel collections, and elements to describe artifacts in terms of 
attributes and relationships (Plattform Industrie 4.0, 2023). The Asset Administration Shell Server (b) imports artifacts 
and their relationships from third-party systems like ERP or PLM systems (a) via a Data Manager and stores them into 
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asset administration shells. On receiving requests from the graphical user interface (d), the DSM server retrieves a DSM 
object containing all relevant information for computing the algorithms and visualizations from the Asset Administration 
Shell Server via HTTP/REST. After executing the algorithms on the DSM object, the DSM server (c) sends the DSM 
object via google Remote Procedure Call (gRPC, 2023) to the graphical user interface. The graphical user interface is 
implemented in Unity, a cross-platform game engine for developing games (Unity Technologies, 2023). 
The current implementation generates the asset administration shell from an Excel file since the automated import of 
artifacts and relationship information is still in development. Therefore, the user must manually specify all artifacts and 
relationship information in the Excel file. For a detailed description of the asset administration shell representation of a 
DSM and the Excel file structure, the reader is referred to Imort et al. (2022). 

 

Figure 1. Three-tier assistance system architecture 

3.2 Example Application – SmartLight 

An application example of a LED lamp with a 3D-printed housing that can be controlled via a desktop app is used to 
develop and evaluate the functionalities of the assistance system. The app connects to the electric circuit board mounted 
on the SmartLight through a WIFI module. The app lets users turn the light on and off and change the light color. 
The SmartLight approximates a cyber-physical system that integrates artifacts from different domains like physical parts, 
electronics, and software (Figure 2, left). The assistance system focuses on all product development artifacts and is not 
restricted to a specific domain, resulting in domain-independent multi-domain matrices. However, the abbreviation "DSM" 
will be used in the remainder of this paper to stay consistent. 

 

Figure 2. Example application – SmartLight 
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3.3 Graph Visualization and User Interface 

The graph-based representation of artifact relationships has advantages over a matrix-based form regarding 
comprehensibility. Thus, Keller et al. (2006) demonstrated in an empirical study that subjects showed significantly lower 
response times and error rates when finding links or analyzing shortest paths in a graph than in a DSM. Therefore, our 
assistance system employs graph drawing algorithms in three-dimensional space, and extending the graph layout to three 
dimensions increases the space of possible node positions. This results in reduced edge crossings, enhancing graph 
aesthetics (Herman et al., 2000; Purchase, 1997) so that improved comprehensibility is assured. 
The current assistance system's implementation focuses on binary symmetrical DSMs drawn as undirected cyclic graphs. 
A generalization of the ForceAtlas2 algorithm to three-dimensional space illustrates a DSM as a graph. This graph layout 
algorithm is used in the graph visualization software Gephi (Jacomy et al., 2014). Figure 3 shows the assistance system's 
automatically generated main view when a user opens the asset administration shell of a DSM. On the left, users can select 
artifacts in a tree view. The tree view displays the hierarchy of artifacts according to their artifact type (e.g., component 
or process). Also, the tree view allows users to hide and show artifact groups of interest. The ForceAtlas2 algorithm 
calculates the graph layout considering the Scaling Ratio and Gravity parameters. Figure 4 shows the stepwise convergence 
of the ForceAtlas2-generated graph layout to a local solution. 

 

Figure 3. Main view in the assistance system's user interface 

 

Figure 4. Evolution of the ForceAtlas2 algorithm over 5,000 iterations (approximately) 

On mouse hover, nodes are labeled by their artifact name. The graph layout provides users with an overview of the general 
architecture of the considered system. E.g., the architecture of the SmartLight's circuit board is given in the top left-hand 
corner of the graph layout (see Figure 3, center). The circuit board has geometric, informational, and energetic relationships 
with the other SmartLight artifacts, such as the housing, the app, or the light ring. On the other hand, many electronic 
components directly relate to the circuit board, resulting in a star-like structure. From these observations, users can visually 
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assess the modularity of products and their artifacts. E.g., artifacts organized modularly are drawn as chain-like structures. 
Highly bus-modular systems like the electronic circuit board exhibit star-like structures. 
A property window is displayed when clicking on an artifact in the tree view or on its respective sphere in the graph layout. 
This window contains information describing the artifact, e.g., its name, identification number, origin (third-party system), 
and direct relationships to other artifacts. Figure 5 (right) illustrates the property window when the user selects the artifact 
["3_SL-Base_printed_large"]. A navigation feature allows users to fly through the three-dimensional space. Therefore, 
users can analyze the details of the graph structure, specific artifacts, and their relationships. 

 

Figure 5. Selection of artifacts 

3.4 Graph Clustering 

Graph clustering functionalities automatically simplify the presented graph layout and identify logical modules and buses 
in the DSM. Logical modules represent an aggregation of several interrelated artifacts, and buses are artifacts that act as 
carriers of others (Sharman and Yassine, 2004). Various clustering algorithms for DSMs have been developed in the past 
(Yu et al., 2007; Idicula, 1995; Borjesson and Hölttä-Otto, 2013). For clustering the ForceAtlas2-generated graph layout, 
the assistance system employs the k-means algorithm (Lloyd, 1982; MacQueen, 1967). Input to this algorithm is the 
artifacts' adjacency matrix resulting from the graph layout positions. In this manner, clustering is performed based on the 
graph structure the user is provided with and shall help form intuitive clusters. Furthermore, the k-means algorithm allows 
generating clusters for large DSMs efficiently when performed with Lloyd's algorithm due to its linear time complexity. 
Figure 6 shows the pseudocode and the resulting ForceAtlas2 graph layout after the DSM clustering. 
Algorithm 1 computes the ForceAtlas2 for each component of the DSM's graph. The affinity matrix is calculated based 
on the generated artifact positions in three-dimensional space. The affinity matrix is input to the k-means algorithm. 
Subsequently, the optimal number of clusters k is determined using the Elbow Method (see Cui (2020) for an introduction 
to the k-means algorithm using the Elbow Method). This method performs the k-means algorithm for all admissible 
numbers of clusters k. The number of clusters k with the lowest distortion (a quality criterion of the clustering) is selected 
as the optimum. Finally, the algorithm reorders the initial DSM's rows and columns by locating artifacts within a cluster 
next to each other. However, rows and columns belonging to a cluster remain unordered. 
Using the results from Algorithm 1, Algorithm 2 condenses the initial DSM by generating a new DSM. In contrast to 
classification, clustering does not have predefined cluster labels. Therefore, for each cluster, a representative element name 
is determined using the PageRank algorithm (Page et al., 1999), namely, the element with the highest rank. Next, 
Algorithm 2 creates a condensed DSM with all representative elements in its rows and columns. Instead of binary values, 
relationships store the number of relationships within and between clusters from the initial DSM. Figure 6 (right) shows 
the resulting graph layout where each sphere represents a cluster. The spheres are named according to their corresponding 
cluster's representative element. Algorithms 1 and 2 are implemented in Python using the packages Scikit-learn (2011) 
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and Networkx (Hagberg et al., 2008). Both algorithms allow product developers to form logical modules of artifacts from 
different domains and analyze the resulting architecture. 

 

Figure 6. Pseudocode and resulting graph layout of a cluster analysis 

3.5 Change Prediction 

The assistance system implements functionalities for automatically predicting the propagation and effects of engineering 
changes through the system. It uses an adapted version of the Change Prediction Method (CPM) in Clarkson et al. (2004), 
combining the likelihood and impact of changes on other components into a measure of risk: 
1. The CPM generates a propagation tree of all simple paths (paths without cycles) between a specified start and target 

elements. 

2. The combined likelihood of change propagation between the start and target element is computed based on the 
propagation tree. 

3. The combined risk is computed, incorporating the impacts into the combined likelihood computation. 

The reader is referred to Clarkson et al. (2004) for a detailed method description. Calculating change risk from one artifact 
to another requires information on the propagation likelihood and change impact. For the CPM, users must provide two 
numerical DSMs with the likelihood and impact of changes as entries. The user has to specify these two numerical DSMs 
in the Excel file described in Section 3.1. The assistance system's adapted version of the CPM additionally allows 
considering cycles in the propagation tree. Furthermore, it enables defining an arbitrary amount of target elements instead 
of one. When changing artifacts, users can compute the effects on the whole or subset of the system. 
If the change risk on a user-specified artifact is to be determined, the corresponding graph node is colored. The calculated 
CPM output can take values between zero and one and is displayed in a color scheme from blue to red. Figure 7 illustrates 
a risk calculation for changing the component ["4_NeoPixel Ring -24x"] and the color scheme for different risk values. 
The assistance system automatically colors all affected system elements when clicking on a node. A user who initiates a 
change receives an overview of the expected effects. Accordingly, the user can communicate the necessary information to 
the relevant actors. This ensures that the effects of changes are quickly identified, and users can implement corrective 
actions to minimize the required effort. Figure 8 provides the pseudocode for computing the risk of an engineering change 
on the remaining system. 
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Figure 7. Change Prediction based on node coloring and change time and cost calculation 

 

Figure 8. Pseudocode of the adapted CPM from Clarkson et al. (2004) implemented in the assistance system 

Based on the propagation tree generated in the CPM and the likelihood and impact values from the DSM, the assistance 
system provides a rough estimation of the time and costs for changing the selected artifact. Figure 7 shows an effort 
estimation for modifying the artifact ["4_NeoPixel Ring -24x"]. A Monte Carlo simulation provides the average processing 
time and cost. Additionally, the results from the simulation allow differentiating between a best, mid, and worst-case 
scenario. The user receives an overview of a scenario's average processing time, cost, and probability. 
Figure 9 shows the pseudocode for calculating the time required for implementing a change. For this purpose, the algorithm 
executes 200 simulation runs for each artifact. It starts with the root of the propagation tree as the first parent. A random 
value between zero and one is generated for each child of a parent. If the random value is smaller than the likelihood that 
a change from a parent will propagate to the child, then the processing time for changing the child is accumulated in the 
variable "total processing time." The processing time is the result of multiplying the initial duration for generating the 
respective artifact (variable "D" in the algorithm) with the change impact of the parent on the child. For each artifact, the 
algorithm generates 200 different total processing times. Figure 10 shows the resulting histogram of the total processing 
time for the engineering change of the artifact ["4_NeoPixel Ring -24x"]. The three scenarios are extracted from the 
histogram by calculating a Gaussian mixture model with three components using the Python package SciPy (Virtanen et 
al., 2020) (see Figure 10). All cost values are computed by multiplying the overall average or scenario-specific average 
total processing time with a predefined cost factor. The weighted output by the algorithm represents the probability of 
occurrence of the respective scenario concerning the total. 
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Figure 9. Pseudocode for predicting the total processing time of a change for one artifact in a single simulation run 

 

Figure 10. Interpretation of Monte Carlo Simulation results for rough change time and cost estimation 

3.6 Graph Navigation 

Due to many artifacts and relationships, the representation generated by the ForceAtlas2 algorithm quickly becomes 
complex. This can already be seen with a change of the component ["3_SL-Base_printed_large"] in Figure 5. Therefore, 
the assistance system provides a view allowing users to navigate the path of affected changes. In Figure 11 (left), the user 
has initiated the view starting with the artifact ["4_NeoPixel Ring -24x"]. The view shows all artifacts directly linked to 
["4_NeoPixel Ring -24x"]. By hovering with the mouse over an artifact, the user can see the name of the neighboring 
artifact. The camera flies over the line by clicking on it, representing the relationship towards the neighboring artifact. 
From there, the assistance system provides the user with the neighbors of that artifact. This view reduces the graph layout 
complexity and helps users navigate the graph more efficiently. Through the colors, the user can navigate to those artifacts 
that are most affected by a change. This allows identifying artifacts possibly influenced by an engineering change. 

 

Figure 11. User-guided navigation along the change impact for ["4_NeoPixel Ring -24x"] 
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4 Discussion and Conclusion 

The presented assistance system provides a visual representation and analysis of artifacts and their relationships to each 
other. The functions of the FuPEP assistance system support the user in identifying and understanding the multiple 
relationships and possible consequences of a product or process change. When initiating an engineering change, product 
developers can list and prioritize affected artifacts efficiently. However, existing product development and PLM software 
tools are superior in organizing and representing artifact information. Therefore, the FuPEP assistance system creates 
capabilities for visualizing change processes beyond this and represents a valuable extension of these third-party systems. 
Visualizing relationships between artifacts, cluster analysis, and change prediction supports product and process 
developers in managing the effects of artifact changes. The knowledge of relationships between artifacts derived from the 
visualization is intended to mitigate problems such as outdated documentation, lack of coordination with affected 
disciplines, delayed changes, etc. (Herrmann et al., 2021). Thus, cluster analyses integrated into the assistance system 
illustrate the effects of highly modular, integral, or mixed product and process architectures. Furthermore, determining the 
probability of a change and its impact contributes to estimating the required monetary and temporal effort. This 
information can be used in many different areas of a development process, like providing a customer with a quick cost 
estimation of a technical change request in the sales department. 
The assistance system is currently still under development. This means that the identified requirements need to be 
implemented in greater detail. This also concerns an evaluation of the usability of the graphical user interface. So far, only 
a few lead users of the involved companies tested the usability and functions. The envisaged further development of the 
assistance system concerns more intuitive guided navigation along the effects of a change. Future activities might involve 
testing the assistance system's viability throughout the product lifecycle. This includes service and maintenance processes 
after delivery as well as artifacts and processes from outside the company. Such activities reveal how well the assistance 
system's functionalities generalize to managing the complexity of product-service systems and supply chains. 
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