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Abstract: A System of System (SoS) is a synthesis of independent systems 

functioning together towards a common goal. They are characterized by their 

dynamic nature and evolvability during operation: addition, removal, and 

modification of component systems and functions. It is, therefore, important to 

characterize the tolerance of such systems to changes and failures. Most change 

propagation and failure analysis methods require some knowledge of failure and 

change probabilities, failure modes, and design parameters, which is difficult to 

obtain or unavailable to an SoS decision-maker, as component systems are 

independent in their management and operation. Consequently, this paper uses high-

level SoS functional models and network-based metrics to characterize SoSs 

functions and assess the functional change and failure of such systems. The proposed 

measures are deployed on an electric vehicle to grid-related service to show how it 

can aid an SoS decision-maker during the system’s development and operation.  
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1 Introduction 

New mobility services such as Electric Vehicle to Grid (EV2G), connected mobility, and 

autonomous vehicle services are becoming more and more important and complex. Such 

services are supported by systems (e.g., electrical grids and electric vehicles) and are 

developed, managed, and operated by various stakeholders (e.g., energy providers, car 

manufacturers, and service providers). These systems can be considered as Systems of 

Systems (SoSs).  SoSs are defined as “a class of systems which are built from components 

which are large scale systems in their own right” (Maier, 1996). SoS are characterized by 

the operational and managerial independence of their elements, their evolutionary 

development, emergent behavior, geographic distribution (Maier, 1996), as well as the 

interoperability, complementarity, and holism of their Component Systems (CSs) (Keating 

& Katina, 2011). In essence, SoSs are a synthesis of distributed, heterogeneous, and 

independent CSs collaborating and functioning together towards a common goal 

(Petitdemange, Borne, & Buisson, 2018; Uday & Marais, 2015). By nature, SoSs are 

evolvable, and their design is dynamic as CSs and functions are added, removed, or 

modified during operations and runtime (Mohsin, Janjua, Islam, Vicente, & Neto, 2019; 

Petitdemange et al., 2018). Furthermore, SoSs operate in highly uncertain environments 

(e.g., new requirements or changing stakeholder needs) (Uday & Marais, 2015), leading to 

changes and failures in CSs functioning.  Therefore, it is important to characterize the 

tolerance of such systems to changes and failures.  
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Various change and failure analysis methods have been proposed in the systems 

engineering literature. Failure mode and effect analysis (FMEA), Fault Tree Analysis 

(FTA), or Risk in Early Design (RED) are widely used failure analysis methods (Walsh, 

Dong, & Tumer, 2018). Among others, the Change Prediction Method (CPM) (Clarkson, 

Simons, & Eckert, 2004) is a significant reference for change propagation analysis (Sarica 

& Luo, 2019).  However, these methods require some knowledge of failure likelihood, 

change probabilities, and design parameters. Knowledge of changes and failures (e.g., 

probabilities) is difficult to obtain or unavailable for an SoS decision-maker due to the 

dynamic and evolving nature of SoS. Moreover, the CSs’ design parameters and detailed 

descriptions are usually unknown to an SoS decision-maker because he/ she usually 

develops, manages, or operates a specific CSs. Besides, the mentioned methods focus on 

independent failures or changes and do not necessarily consider life cycle dependencies. 

In addition, they are computationally costly (Sarica & Luo, 2019; Uday & Marais, 2015; 

Walsh et al., 2018). These limitations are significant in the context of SoS development 

(Sarica & Luo, 2019) as (Luo, 2015) showed that design dependency cycles between 

components are one of the main causes of product evolvability.  

The use of network-based metrics to analyze system change and failure propagations 

(Haley, Dong, & Tumer, 2016; Sarica & Luo, 2019) is increasingly recognized to address 

the gaps of usual methods. In this paper, we propose to use network-metrics to characterize 

functional SoSs change and failure. For this purpose, we build a network of SoS functions 

based on high-level SoS functional descriptions.  

Section 2 reviews the use of network-based metrics in characterizing systems change and 

failure propagation. In section 3, we show how to build a functional network based on SoS 

functional chains and how network-based metrics can be used. We deploy these 

measurements on an electric vehicle-related service use case in section 4. Finally, we 

conclude in section 5 and provide future research perspectives.    

2 Literature Review  

The previously presented methods for analyzing changes and failures are rather limited 

when addressing SoS development. For SoS development, we argue that a method would 

need to have the following characteristics:  

- (C1) No knowledge of failure likelihood, change probabilities required: 

Knowledge on failure likelihood and change probabilities is difficult to obtain in 

the context of SoSs development as CSs, and their functions change and evolve 

during runtime.  

- (C2) No knowledge of design parameters required: Since CSs are independent, 

design parameters are not necessarily available to an SoS decision-maker.   

- (C3) Consider cycle dependencies: Luo, (2015) showed that intercomponent 

design dependency cycles in system architecture give rise to product evolvability. 

As such, dependency cycles concern SoSs (Sarica & Luo, 2019).  

- (C4) Low computational cost  

In the following, we review network-based change and failure analysis methods. Table 1 

shows how the network metrics they use address partly or fully these limits (Sarica & Luo, 

2019; Uday & Marais, 2015; Walsh, Dong, & Tumer, 2019), and as such, can be relevant 

in the context of SoSs development.  
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Representing complex engineering systems as a network of interconnected components, 

node centrality metrics such as degree centrality and eigenvector centrality are used to 

characterize the tendency of a node (e.g., component) to propagate changes and failures. 

For example,  Sosa et al., (2011) propose a method to identify hubs (defined as highly 

connected components) using product Design Structure Matrices (DSMs) and measuring 

node degrees. The authors empirically show that the presence of hubs in system 

architectures is associated with a low number of defects in response to changes. Chai et al., 

(2011) considered a networked infrastructure system in the context of oil and gas industries 

and used degree centrality measures to identify infrastructures that are most relied upon 

and, as such, might cause most significant cascading failures. To consider cyclic 

dependency between components, Sarica & Luo, (2019) use eigenvector centricity 

measures to characterize the influence and susceptibility of components to change. 

Eigenvector calculations–based measures have also been used by (Li, Wang, Zhong, & 

Zou, 2018) to identify influential function modules by considering function modules as the 

nodes of the network.  

Other studies explore network metrics to characterize the overall robustness of a system 

(or an SoS) to the removal or loss of a node or an edge (e.g., a CS removal or an interaction 

loss between two CSs). For instance, Antul et al., (2017) represents an SoS as the network 

of its CSs and measures the algebraic connectivity to capture “a network’s vulnerability to 

disconnection (e.g., removal of a CSs).”  In a similar fashion, the robustness coefficient 

has been used in the literature (Haley et al., 2016; Paparistodimou, Duffy, Whitfield, 

Knight, & Robb, 2020; Walsh et al., 2019) and characterizes the largest connected 

component (connected nodes) after a node removal (e.g., removal of a CS in an SoS or the 

loss of a function). Paparistodimou et al., (2020) use the robustness coefficient to compare 

naval distributed engineering system architectures options. Walsh et al., (2019) use the 

robustness coefficient to explore the correlation between robustness and modularity. The 

Average Shortest Path Length (ASPL) is another metric that has been used to characterize 

the robustness of a network (a system) (Walsh et al., 2019). The ASPL measures the 

average shortest distance between two nodes in the network. As such, the ASPL describes 

the relative efficiency of a flow to travel throughout a network. The ASPL has been usually 

used to characterize the robustness of the overall network and compare nominal 

architectures and failed cases (after node removal) (Haley et al., 2016). In (Walsh et al., 

2018), a variation in the ASPL is used to characterize the relative vulnerability of each 

node locally. A “vulnerable” node is defined as a node whose removal disconnects a large 

portion of the network or increases the ASPL. To evaluate the vulnerability of a system 

parameter, the authors measure the variation of the ASPL (ΔASPL) of a behavioral network 
(i.e., design parameters network) after the parameter node failure. The authors express a 

failure by decreasing the weights of all edges associated with that node.  As such, the higher 

the ΔASPL is, the more vulnerable the parameter node is.    

Succinctly, network-based change and failure analysis methods rely on local network-

metrics (network centrality metrics) characterizing the tendency of each node to propagate 

change or failure, or global network-metrics characterizing the robustness of the overall 

network to changes or failures (e.g., Robustness Coefficient) (Table 1). Global network-

metrics (ASPL) have also been adapted to characterize the local vulnerability of nodes 

(Walsh et al., 2018). Local and global metrics are complementary and address different 

purposes. Hence, both global and local network-metrics can be useful tools for analyzing 
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and comparing different SoS architectures giving insights to an SoS decision-maker during 

the system’s development and evolution. 

 
Table 3: Characteristics of the most used network metrics in change and failure analysis methods 

Network Metrics used in change 

and failure propagation methods  

Measures characteristics 

C1 C2 C3 C4 

Local metrics 

Degree centrality x x (depending on the considered network)   x 

Eigenvector 

centrality 
x x (depending on the considered network) x x 

Global 

metrics 

Algebraic 

connectivity 
x x (depending on the considered network) x x 

Robustness 

coefficient 
x x (depending on the considered network)  x 

ASPL x x (depending on the considered network)  x 

 

The various studies of the literature use networks with different views of the systems, 

leading to different interpretations of the network metrics. The authors mostly consider 

networks of interconnected components (or CSs for SoSs). The interconnection or 

dependency between components might model spatial, structural, material, energy, or 

information dependencies. A component dependency is represented by a weighted or 

unweighted edge, depending on the intensity or type of dependency (Sarica & Luo, 2019). 

More recent publications considered networks of function modules built based on 

functional chains (Li et al., 2018) or behavioral networks based on mathematical details of 

the system's governing equations Walsh et al., (2018) (in which case the design parameters 

are required C2 Table 1). Thus, considering such networks in the context of SoS is worth 

exploring since they have rarely been considered in the literature. 

The use of network-metrics is a promising avenue to analyze changes and failures in SoS 

development. However, SoS changes and failure include CSs and functionalities addition, 

removal, or modification during runtime, which distinguishes them from monolithic 

systems. Therefore, the interpretability of measures and results highly depends on both the 

systems specificities and the network used to model them. As most SoS network-based 

change and failure analysis methods consider a network of the CSs, we propose an 

approach to build an SoS functional network and justify its use. We also propose a use and 

an interpretation of local network-metrics to analyze such a network.  

3 An approach for Systems of Systems functional change and failure 

characterization 

3.1 SoS functional dependency matrix and network definition 

In the following, we focus on functions and their dependencies as the main object of 

analysis, due to their practical relevance and the availability of SoS frameworks that are 

based on this perspective. From a practical perspective, an SoS decision-maker usually 

develops, manages, and operate a specific CS, or manages the overall SoS from a high-

level perspective. Hence, SoS decision-makers do not have extensive knowledge on the 

structure of all CSs or their design parameters. They rather have a high-level representation 

of how CSs function together to achieve a common goal, mission, or service during 

development and operation. From a theoretical perspective, Luo, (2017)puts functions and 



Fakhfakh, Sarra; Hein, Andreas Makoto; Chazal, Yann; Jankovic, Marija 

DSM 2020 211 

functionality at the heart of SoS innovation and design. SoS development is described as 

the expansion of the thinking beyond the boundaries of independent systems and how the 

combination of the functions of individual systems can be synthetized to create a new 

functionality. Different SoS frameworks include functional  representations for SoS 

(Fakhfakh, Hein, Chazal, & Jankovic, 2020) . For instance, functional chains represent 

functions and their logical and execution relationships (including information and energy 

flows for example). For these reasons, we rely specifically on SoS functional chains to 

build an SoS functional network.  

Based on SoS functional chains, shown on the left of Figure 1, we define the SoS functions 

dependency matrix 𝐴 =  𝑎𝑖,𝑗 𝑖,𝑗 ∈⟦ ,𝑛⟧, where n is the number of considered SoS functions. 

An element  𝑎𝑖,𝑗 of matrix 𝐴 is equal to 1 if function 𝑖 requires the output of function 𝑗 as 

its input and 0 otherwise. In other words, (𝑎𝑖,𝑗 = 1) if the execution of function 𝑖 depends 

on function 𝑗. Thus, 𝐴 is a squared non-symmetric matrix. The graph 𝐺 corresponding to 

the dependency matrix 𝐴 is unidimensional, directed, and unweighted, as shown in the 

middle of Figure 1. 𝐺 represents an SoS functional network, as shown in the right of Figure 

1.  

 

Figure 14. Building an SoS functional network from SoS functional chains 

3.2 Network-based metrics to characterize SoS functional change and failure  

In the following paragraphs, we detail the definitions of the local network-measures we 

considered for characterizing the tendency of functions to propagate change and failure 

and the impact a function's change or failure on the robustness of the network. We also 

propose an interpretation of such measures when looking at an SoS functional network.  

a) Local centrality measures: characterizing the tendency of functions to propagate 

change and failure 

- The degree centrality simply counts the number of edges linked to a given node. In the 

context of a directed network, we differentiate in-degree centrality and out-degree 

centrality. In-degree centrality counts the number of edges incident to the node (nb_in_ed) 

while out-degree count the number of edges linked to the node and pointing toward other 

nodes (nb_out_ed). Equations (1) and (2) give the formula for normalized in- and out-

degree centrality measures. In general, in/out-degree centrality measures the importance of 

a node looking at its direct connections. Considering the SoS functional network, a high 

out-degree centrality value indicates that the function is highly relied-upon (i.e., provides 

inputs to many other functions) and might cause cascading changes and failures. A high 
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in-degree centrality value reveals that a function highly relies on its neighbor functions and 

can be changed or can fail as soon as one of its neighbor functions undergoes a change or 

a failure.  𝐷𝐶𝑖𝑛 = 𝑛𝑏 𝑖𝑛 𝑒 𝑛  1  
(1)  

𝐷𝐶𝑜𝑢𝑡 = 𝑛𝑏 𝑜𝑢  𝑒 𝑛  1  
(2)  

Degree centrality considers direct links alike. Thus, it does not include the quality of the 

links or the cyclic dependency.  

- The eigenvector centrality defines the node importance with respect to the importance of 

the nodes to which it is connected. The importance of node 𝑖 ( 𝑥𝑖) can then be written as (λ 
being a constant):  

𝑥𝑖 = 1λ ∑ 𝑥𝑗𝑗∈Γ( )  
(3) 

 

With Γ( ) the neighborhood of node i.  

The SoS functional network being directed, we differentiate node influence (i.e., function 

influence) and node susceptibility as suggested by (Sarica & Luo, 2019). The influence of 

a node is quantified by the number of edges pointing out to other nodes that are themselves 

influential (i.e., a function is as influential as it is highly relied-upon by functions that are 

themselves influential). The susceptibly of a function is proportional to the number of 

susceptible functions on which it relies on. Influential functions tend to propagate changes 

and failures in the networks, while susceptible functions are susceptible to changes and 

failures that are carried to them.  

Replacing the importance of a node 𝑖 ( 𝑥𝑖) by its influence ( 𝑝𝑖) and its susceptibility ( 𝑞𝑖) 
in equation (3), it can be written in a matrix form as equation (4) and (5) for influence and 

susceptibility, respectively.  𝐴𝑡𝒑 = λ 𝒑  (4) 𝐴𝒒 = λ𝑞𝒒  (5) 

Where 𝒑 and 𝒒 are vectors of size n with  𝒑 𝑖 = 𝑝𝑖   and 𝒒 𝑖 = 𝑞𝑖 for 𝑖 ∈ ⟦1, 𝑛⟧. 

According to the Perron–Frobenius theorem, Eq. (4) and (5) have unique solutions (with 

non–negative indices 𝑝𝑖  and 𝑞𝑖), which are the eigenvector corresponding to the largest 

eigenvalue λ  and λ𝑞  of 𝐴𝑡 and 𝐴 respectively. Both vectors 𝒑 and 𝒒 can be normalized 

as  ( 𝑛∑  𝑖𝑖∈⟦0,𝑛⟧ 𝒑) and ( 
𝑛∑ 𝑞𝑖𝑖∈⟦0,𝑛⟧ 𝒒) (Sarica & Luo, 2019).  

b) Topological dysconnectivity and ΔASPL:  characterizing the impact a function's 

change or failure on the robustness of the network 

In a network, a “vulnerable” node is such that its removal disconnects a large portion of 

the network or increases the ASPL (Walsh et al., 2018). Thus a “vulnerable” node is a node 
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that diminishes the robustness of the network. In the context of SoS development, a change 

or a failure of a CS corresponds to the removal of a function (or multiple functions) or 

deterioration of functional dependencies. Such change or failure can jeopardize the overall 

functionality of the SoS. When a function is removed, its direct dependencies are also 

removed. The functional chain is consequently shredded and the overall SoS functionality 

may be lost. Similarly, when the functional dependencies are deteriorated, the functional 

chain and the overall SoS functionality may be degraded. Two options are considered to 

characterize the consequences of a change or a failure undergone by a specific function on 

the network. The first option is to consider the number of connected networks and the size 

of the largest connected network after its removal; The second option is to compute the 

ΔASPL after a deterioration of its direct functional dependencies materialize by a decrease 

in the weight of all edges linked to it from 1 to 0.5 (fault variable suggested by (Walsh et 

al., 2018)). Since, the aim is to assess the effect of the function deterioration on the overall 

robustness of the network, the network is considered undirected and incoming and outgoing 

edges are equivalent. Equation 6 reminds the ASPL formula ( 𝑖,𝑗being the shortest distance 

between node i and j).  

𝐴 𝑃𝐿 =  1𝑛 ∑  𝑖,𝑗𝑖,𝑗 ∈⟦ ,𝑛⟧  
(6) 

 

The higher the number of connected graphs generated by a function removal; the more 

effort can be expected to recover the overall functionality of an SoS. The more extensive 

the largest connected network, the more robust the network is to the function removal.  

Looking at the ΔASPL, higher values indicate that the function is more “vulnerable” 
compared to other nodes in the network. Thus, high ΔASPL indicates that a deterioration 
of a function’s dependencies (as a consequence of its change or failure) degrades the overall 

SoS functionality. 

Both topological dysconnectivity and ΔASPL can be measured after the removal or 

deterioration of multiple functions, thus reflecting multiple changes or failures. 

4 Network-Base metrics comparison and implications on a use case 

We compute the local network-metrics introduced in section 3 on a functional network 

corresponding to an SoS related to Electric Vehicles (EVs). A car manufacturer, an energy 

provider, and eventually several service providers collaborate to offer EV charging service 

(Plug & Charge) in the context of Electric Vehicle to Grid (V2G) services (Chazal, 2018). 

Such a service is an SoS as it requires independent systems (CSs) (e.g., EV, charging 

stations, electricity grids, and service provision servers) to function together to provide the 

EV charging service. Based on the operational and functional descriptions of the service 

provision modeled in SysML, we counted 8 CSs performing 22 high-level functions to 

provide the service. We construct the functional dependency matrix and the functional 

network of the SoS from the available functional chains (Figure 1).  Table 1 presents the 

values of in- and out-degree centrality and eigenvector centrality measures (influence and 

susceptibility score). It also gives the number of connected networks and the size of the 

largest connected network after the function removal and the ΔASPL after the deterioration 
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of the function direct dependencies.  In both Figure 2 and Table 2, CSs and CSs functions 

are identified by their Ids.  

According to the results in Table 2, most functions have the same tendency to propagate 

changes and failures to their neighbors. The same tendency can be observed for functions 

to undergo a change or a failure when the neighbor functions change or fail (in-degree 

equals out-degree for functions 1,2,3,4,5,11,12,15,16,18, and 22).  Function 6 highly relies 

on its neighbor functions and, as such, is highly susceptible to its neighbor functions 

changes and failures. On the contrary, function 10 presents a high out-degree centrality 

measure and can cause cascading changes and failures to its neighbors. Since the 

considered directed network (Figure 2) does not present cycles and has low connectivity, 

influence and susceptibility indicators do not allow to clearly differentiate functions 

(function 7 being the most influential and function 6 the most susceptible).  

 

Figure 15. SoS functional dependency matrix and corresponding functional network 

Besides, changes or failures of functions with high ΔASPL values (functions 10, 6, and 5, 

for example) are likely to degrade the SoS overall functionality.  Functions 10 and 19 seem 

critical as their removal disconnects the network in 5 and 3 connected networks, 

respectively. Such disconnection might involve a significant effort to retrieve the overall 

SoS functionality. Both the removals of functions 6 and 7 disconnect the network into 2 

connected networks. However, the largest connected networks caused by the removal of 

function 7 is larger than that caused by the removal of function 6 (20 and 14 nodes). This 

might indicate that the removal of function 6 has a larger impact on the overall network 

robustness than the removal of function 7.  

Therefore, these measures allow the identification of functions critical to the propagation 

of change and failure or functions whose change or failure degrades the overall 

functionality of the SoS. During the SoS early design stages, such measures allow the SoS 

decision-makers to prioritize the redevelopment of critical functions or allocate them to 

CSs of which they control the management and operation. Furthermore, local network-

metrics complemented by global-network metrics can be used to compare different SoS 

functional architectures and assess “what-if” scenarios. Thus, network-metrics can aid SoS 

decision-makers to identify which SoSs are worth getting involved in. During operation 

and runtime, these measures help track the critical functions as the system evolves.  



Fakhfakh, Sarra; Hein, Andreas Makoto; Chazal, Yann; Jankovic, Marija 

DSM 2020 215 

Table 4: Network metrics measures for the considered EV related SoS functional network 

Id 
In-

degree 

Out-

degree 

Influence 

Indicator 

Susceptibility 

Indicator 
ΔASPL 

Nb of 

disconnected 

networks  

Size of the 

largest 

connected 

network 

1 0,048 0,048 0 0 0,340 2 17 

2 0,048 0,048 0 0 0,279 2 18 

3 0,048 0,048 0 0 0,392 2 16 

4 0,048 0,048 0 0 0,210 2 19 

5 0,048 0,048 0 0 0,435 2 15 

6 0,190 0 0 22 0,496 2 14 

7 0 0,095 22 0 0,132 2 20 

8 0 0,048 0 0 0,045 1 21 

9 0,048 0 0 0 0,045 1 21 

10 0,143 0,190 0 0 0,517 5 15 

11 0,048 0,048 0 0 0,045 1 21 

12 0,048 0,048 0 0 0,132 2 20 

13 0,048 0 0 0 0,045 1 21 

14 0 0,048 0 0 0,045 1 21 

15 0,048 0,048 0 0 0,132 2 20 

16 0,048 0,048 0 0 0,210 2 19 

17 0,048 0 0 0 0,045 1 21 

18 0,048 0,048 0 0 0,279 2 18 

19 0,095 0,095 0 0 0,409 3 16 

20 0 0,048 0 0 0,045 1 21 

21 0 0,048 0 0 0,045 1 21 

22 0,048 0,048 0 0 0,132 2 20 

5 Conclusion and future work 

In this paper, we use an SoS functional network and measure degree and eigenvector 

centrality to characterize the influence or susceptibility of a function to change and failure 

propagation in its direct neighborhood and the network in general. We also assess the 

tendency of the SoS to maintain its functionality after a function removal or a function 

deterioration. Through an example on an EV related SoS, we show that such measures are 

complementary and can aid an SoS decision-maker during the SoS development or 

runtime. However, further industrial applications are to be analyzed to confirm the 

usefulness of network-metrics. Other network-metrics, including global metrics, can be 

used in the analysis of SoS evolution, including changes and failures. Furthermore, 

theoretical work is still to be done to better understand the possible uses of graph theory in 

SoSs, specifically in terms of results interpretation. This is all the more important as SoSs 

involve not only heterogeneous and independent systems and their functionalities but also 

independent stakeholders. Therefore, they can be modeled as multilayer networks. 
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