
22nd INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING CONFERENCE,

DSM 2020

CAMBRIDGE, MASSACHUSETTS, USA, 13 – 15 October, 2020

DSM 2020 207

Characterizing Systems of Systems change and failure via

network-based metrics

Sarra Fakhfakh1,2, Andreas-Makoto Hein1, Marija Jankovic1, Yann Chazal2

1 Université Paris-Saclay, CentraleSupélec, Laboratoire Génie Industriel, France
2 Renault SA, France

Abstract: A System of System (SoS) is a synthesis of independent systems

functioning together towards a common goal. They are characterized by their

dynamic nature and evolvability during operation: addition, removal, and

modification of component systems and functions. It is, therefore, important to

characterize the tolerance of such systems to changes and failures. Most change

propagation and failure analysis methods require some knowledge of failure and

change probabilities, failure modes, and design parameters, which is difficult to

obtain or unavailable to an SoS decision-maker, as component systems are

independent in their management and operation. Consequently, this paper uses high-

level SoS functional models and network-based metrics to characterize SoSs

functions and assess the functional change and failure of such systems. The proposed

measures are deployed on an electric vehicle to grid-related service to show how it

can aid an SoS decision-maker during the system’s development and operation.

Keywords: Systems of Systems, Functional modelling, DSM, Network-based metrics

1 Introduction

New mobility services such as Electric Vehicle to Grid (EV2G), connected mobility, and

autonomous vehicle services are becoming more and more important and complex. Such

services are supported by systems (e.g., electrical grids and electric vehicles) and are

developed, managed, and operated by various stakeholders (e.g., energy providers, car

manufacturers, and service providers). These systems can be considered as Systems of

Systems (SoSs). SoSs are defined as “a class of systems which are built from components

which are large scale systems in their own right” (Maier, 1996). SoS are characterized by

the operational and managerial independence of their elements, their evolutionary

development, emergent behavior, geographic distribution (Maier, 1996), as well as the

interoperability, complementarity, and holism of their Component Systems (CSs) (Keating

& Katina, 2011). In essence, SoSs are a synthesis of distributed, heterogeneous, and

independent CSs collaborating and functioning together towards a common goal

(Petitdemange, Borne, & Buisson, 2018; Uday & Marais, 2015). By nature, SoSs are

evolvable, and their design is dynamic as CSs and functions are added, removed, or

modified during operations and runtime (Mohsin, Janjua, Islam, Vicente, & Neto, 2019;

Petitdemange et al., 2018). Furthermore, SoSs operate in highly uncertain environments

(e.g., new requirements or changing stakeholder needs) (Uday & Marais, 2015), leading to

changes and failures in CSs functioning. Therefore, it is important to characterize the

tolerance of such systems to changes and failures.

Part V: Integration Architectures

208 DSM 2020

Various change and failure analysis methods have been proposed in the systems

engineering literature. Failure mode and effect analysis (FMEA), Fault Tree Analysis

(FTA), or Risk in Early Design (RED) are widely used failure analysis methods (Walsh,

Dong, & Tumer, 2018). Among others, the Change Prediction Method (CPM) (Clarkson,

Simons, & Eckert, 2004) is a significant reference for change propagation analysis (Sarica

& Luo, 2019). However, these methods require some knowledge of failure likelihood,

change probabilities, and design parameters. Knowledge of changes and failures (e.g.,

probabilities) is difficult to obtain or unavailable for an SoS decision-maker due to the

dynamic and evolving nature of SoS. Moreover, the CSs’ design parameters and detailed

descriptions are usually unknown to an SoS decision-maker because he/ she usually

develops, manages, or operates a specific CSs. Besides, the mentioned methods focus on

independent failures or changes and do not necessarily consider life cycle dependencies.

In addition, they are computationally costly (Sarica & Luo, 2019; Uday & Marais, 2015;

Walsh et al., 2018). These limitations are significant in the context of SoS development

(Sarica & Luo, 2019) as (Luo, 2015) showed that design dependency cycles between

components are one of the main causes of product evolvability.

The use of network-based metrics to analyze system change and failure propagations

(Haley, Dong, & Tumer, 2016; Sarica & Luo, 2019) is increasingly recognized to address

the gaps of usual methods. In this paper, we propose to use network-metrics to characterize

functional SoSs change and failure. For this purpose, we build a network of SoS functions

based on high-level SoS functional descriptions.

Section 2 reviews the use of network-based metrics in characterizing systems change and

failure propagation. In section 3, we show how to build a functional network based on SoS

functional chains and how network-based metrics can be used. We deploy these

measurements on an electric vehicle-related service use case in section 4. Finally, we

conclude in section 5 and provide future research perspectives.

2 Literature Review

The previously presented methods for analyzing changes and failures are rather limited

when addressing SoS development. For SoS development, we argue that a method would

need to have the following characteristics:

- (C1) No knowledge of failure likelihood, change probabilities required:

Knowledge on failure likelihood and change probabilities is difficult to obtain in

the context of SoSs development as CSs, and their functions change and evolve

during runtime.

- (C2) No knowledge of design parameters required: Since CSs are independent,

design parameters are not necessarily available to an SoS decision-maker.

- (C3) Consider cycle dependencies: Luo, (2015) showed that intercomponent

design dependency cycles in system architecture give rise to product evolvability.

As such, dependency cycles concern SoSs (Sarica & Luo, 2019).

- (C4) Low computational cost

In the following, we review network-based change and failure analysis methods. Table 1

shows how the network metrics they use address partly or fully these limits (Sarica & Luo,

2019; Uday & Marais, 2015; Walsh, Dong, & Tumer, 2019), and as such, can be relevant

in the context of SoSs development.

Fakhfakh, Sarra; Hein, Andreas Makoto; Chazal, Yann; Jankovic, Marija

DSM 2020 209

Representing complex engineering systems as a network of interconnected components,

node centrality metrics such as degree centrality and eigenvector centrality are used to

characterize the tendency of a node (e.g., component) to propagate changes and failures.

For example, Sosa et al., (2011) propose a method to identify hubs (defined as highly

connected components) using product Design Structure Matrices (DSMs) and measuring

node degrees. The authors empirically show that the presence of hubs in system

architectures is associated with a low number of defects in response to changes. Chai et al.,

(2011) considered a networked infrastructure system in the context of oil and gas industries

and used degree centrality measures to identify infrastructures that are most relied upon

and, as such, might cause most significant cascading failures. To consider cyclic

dependency between components, Sarica & Luo, (2019) use eigenvector centricity

measures to characterize the influence and susceptibility of components to change.

Eigenvector calculations–based measures have also been used by (Li, Wang, Zhong, &

Zou, 2018) to identify influential function modules by considering function modules as the

nodes of the network.

Other studies explore network metrics to characterize the overall robustness of a system

(or an SoS) to the removal or loss of a node or an edge (e.g., a CS removal or an interaction

loss between two CSs). For instance, Antul et al., (2017) represents an SoS as the network

of its CSs and measures the algebraic connectivity to capture “a network’s vulnerability to

disconnection (e.g., removal of a CSs).” In a similar fashion, the robustness coefficient

has been used in the literature (Haley et al., 2016; Paparistodimou, Duffy, Whitfield,

Knight, & Robb, 2020; Walsh et al., 2019) and characterizes the largest connected

component (connected nodes) after a node removal (e.g., removal of a CS in an SoS or the

loss of a function). Paparistodimou et al., (2020) use the robustness coefficient to compare

naval distributed engineering system architectures options. Walsh et al., (2019) use the

robustness coefficient to explore the correlation between robustness and modularity. The

Average Shortest Path Length (ASPL) is another metric that has been used to characterize

the robustness of a network (a system) (Walsh et al., 2019). The ASPL measures the

average shortest distance between two nodes in the network. As such, the ASPL describes

the relative efficiency of a flow to travel throughout a network. The ASPL has been usually

used to characterize the robustness of the overall network and compare nominal

architectures and failed cases (after node removal) (Haley et al., 2016). In (Walsh et al.,

2018), a variation in the ASPL is used to characterize the relative vulnerability of each

node locally. A “vulnerable” node is defined as a node whose removal disconnects a large

portion of the network or increases the ASPL. To evaluate the vulnerability of a system

parameter, the authors measure the variation of the ASPL (ΔASPL) of a behavioral network
(i.e., design parameters network) after the parameter node failure. The authors express a

failure by decreasing the weights of all edges associated with that node. As such, the higher

the ΔASPL is, the more vulnerable the parameter node is.

Succinctly, network-based change and failure analysis methods rely on local network-

metrics (network centrality metrics) characterizing the tendency of each node to propagate

change or failure, or global network-metrics characterizing the robustness of the overall

network to changes or failures (e.g., Robustness Coefficient) (Table 1). Global network-

metrics (ASPL) have also been adapted to characterize the local vulnerability of nodes

(Walsh et al., 2018). Local and global metrics are complementary and address different

purposes. Hence, both global and local network-metrics can be useful tools for analyzing

Part V: Integration Architectures

210 DSM 2020

and comparing different SoS architectures giving insights to an SoS decision-maker during

the system’s development and evolution.

Table 3: Characteristics of the most used network metrics in change and failure analysis methods

Network Metrics used in change

and failure propagation methods

Measures characteristics

C1 C2 C3 C4

Local metrics

Degree centrality x x (depending on the considered network) x

Eigenvector

centrality
x x (depending on the considered network) x x

Global

metrics

Algebraic

connectivity
x x (depending on the considered network) x x

Robustness

coefficient
x x (depending on the considered network) x

ASPL x x (depending on the considered network) x

The various studies of the literature use networks with different views of the systems,

leading to different interpretations of the network metrics. The authors mostly consider

networks of interconnected components (or CSs for SoSs). The interconnection or

dependency between components might model spatial, structural, material, energy, or

information dependencies. A component dependency is represented by a weighted or

unweighted edge, depending on the intensity or type of dependency (Sarica & Luo, 2019).

More recent publications considered networks of function modules built based on

functional chains (Li et al., 2018) or behavioral networks based on mathematical details of

the system's governing equations Walsh et al., (2018) (in which case the design parameters

are required C2 Table 1). Thus, considering such networks in the context of SoS is worth

exploring since they have rarely been considered in the literature.

The use of network-metrics is a promising avenue to analyze changes and failures in SoS

development. However, SoS changes and failure include CSs and functionalities addition,

removal, or modification during runtime, which distinguishes them from monolithic

systems. Therefore, the interpretability of measures and results highly depends on both the

systems specificities and the network used to model them. As most SoS network-based

change and failure analysis methods consider a network of the CSs, we propose an

approach to build an SoS functional network and justify its use. We also propose a use and

an interpretation of local network-metrics to analyze such a network.

3 An approach for Systems of Systems functional change and failure

characterization

3.1 SoS functional dependency matrix and network definition

In the following, we focus on functions and their dependencies as the main object of

analysis, due to their practical relevance and the availability of SoS frameworks that are

based on this perspective. From a practical perspective, an SoS decision-maker usually

develops, manages, and operate a specific CS, or manages the overall SoS from a high-

level perspective. Hence, SoS decision-makers do not have extensive knowledge on the

structure of all CSs or their design parameters. They rather have a high-level representation

of how CSs function together to achieve a common goal, mission, or service during

development and operation. From a theoretical perspective, Luo, (2017)puts functions and

Fakhfakh, Sarra; Hein, Andreas Makoto; Chazal, Yann; Jankovic, Marija

DSM 2020 211

functionality at the heart of SoS innovation and design. SoS development is described as

the expansion of the thinking beyond the boundaries of independent systems and how the

combination of the functions of individual systems can be synthetized to create a new

functionality. Different SoS frameworks include functional representations for SoS

(Fakhfakh, Hein, Chazal, & Jankovic, 2020) . For instance, functional chains represent

functions and their logical and execution relationships (including information and energy

flows for example). For these reasons, we rely specifically on SoS functional chains to

build an SoS functional network.

Based on SoS functional chains, shown on the left of Figure 1, we define the SoS functions

dependency matrix 𝐴 = 𝑎𝑖,𝑗 𝑖,𝑗 ∈⟦ ,𝑛⟧, where n is the number of considered SoS functions.

An element 𝑎𝑖,𝑗 of matrix 𝐴 is equal to 1 if function 𝑖 requires the output of function 𝑗 as

its input and 0 otherwise. In other words, (𝑎𝑖,𝑗 = 1) if the execution of function 𝑖 depends

on function 𝑗. Thus, 𝐴 is a squared non-symmetric matrix. The graph 𝐺 corresponding to

the dependency matrix 𝐴 is unidimensional, directed, and unweighted, as shown in the

middle of Figure 1. 𝐺 represents an SoS functional network, as shown in the right of Figure

1.

Figure 14. Building an SoS functional network from SoS functional chains

3.2 Network-based metrics to characterize SoS functional change and failure

In the following paragraphs, we detail the definitions of the local network-measures we

considered for characterizing the tendency of functions to propagate change and failure

and the impact a function's change or failure on the robustness of the network. We also

propose an interpretation of such measures when looking at an SoS functional network.

a) Local centrality measures: characterizing the tendency of functions to propagate

change and failure

- The degree centrality simply counts the number of edges linked to a given node. In the

context of a directed network, we differentiate in-degree centrality and out-degree

centrality. In-degree centrality counts the number of edges incident to the node (nb_in_ed)

while out-degree count the number of edges linked to the node and pointing toward other

nodes (nb_out_ed). Equations (1) and (2) give the formula for normalized in- and out-

degree centrality measures. In general, in/out-degree centrality measures the importance of

a node looking at its direct connections. Considering the SoS functional network, a high

out-degree centrality value indicates that the function is highly relied-upon (i.e., provides

inputs to many other functions) and might cause cascading changes and failures. A high

Part V: Integration Architectures

212 DSM 2020

in-degree centrality value reveals that a function highly relies on its neighbor functions and

can be changed or can fail as soon as one of its neighbor functions undergoes a change or

a failure. 𝐷𝐶𝑖𝑛 = 𝑛𝑏 𝑖𝑛 𝑒 𝑛 1
(1)

𝐷𝐶𝑜𝑢𝑡 = 𝑛𝑏 𝑜𝑢 𝑒 𝑛 1
(2)

Degree centrality considers direct links alike. Thus, it does not include the quality of the

links or the cyclic dependency.

- The eigenvector centrality defines the node importance with respect to the importance of

the nodes to which it is connected. The importance of node 𝑖 (𝑥𝑖) can then be written as (λ
being a constant):

𝑥𝑖 = 1λ ∑ 𝑥𝑗𝑗∈Γ()
(3)

With Γ() the neighborhood of node i.

The SoS functional network being directed, we differentiate node influence (i.e., function

influence) and node susceptibility as suggested by (Sarica & Luo, 2019). The influence of

a node is quantified by the number of edges pointing out to other nodes that are themselves

influential (i.e., a function is as influential as it is highly relied-upon by functions that are

themselves influential). The susceptibly of a function is proportional to the number of

susceptible functions on which it relies on. Influential functions tend to propagate changes

and failures in the networks, while susceptible functions are susceptible to changes and

failures that are carried to them.

Replacing the importance of a node 𝑖 (𝑥𝑖) by its influence (𝑝𝑖) and its susceptibility (𝑞𝑖)
in equation (3), it can be written in a matrix form as equation (4) and (5) for influence and

susceptibility, respectively. 𝐴𝑡𝒑 = λ 𝒑 (4) 𝐴𝒒 = λ𝑞𝒒 (5)

Where 𝒑 and 𝒒 are vectors of size n with 𝒑 𝑖 = 𝑝𝑖 and 𝒒 𝑖 = 𝑞𝑖 for 𝑖 ∈ ⟦1, 𝑛⟧.

According to the Perron–Frobenius theorem, Eq. (4) and (5) have unique solutions (with

non–negative indices 𝑝𝑖 and 𝑞𝑖), which are the eigenvector corresponding to the largest

eigenvalue λ and λ𝑞 of 𝐴𝑡 and 𝐴 respectively. Both vectors 𝒑 and 𝒒 can be normalized

as (𝑛∑ 𝑖𝑖∈⟦0,𝑛⟧ 𝒑) and (
𝑛∑ 𝑞𝑖𝑖∈⟦0,𝑛⟧ 𝒒) (Sarica & Luo, 2019).

b) Topological dysconnectivity and ΔASPL: characterizing the impact a function's

change or failure on the robustness of the network

In a network, a “vulnerable” node is such that its removal disconnects a large portion of

the network or increases the ASPL (Walsh et al., 2018). Thus a “vulnerable” node is a node

Fakhfakh, Sarra; Hein, Andreas Makoto; Chazal, Yann; Jankovic, Marija

DSM 2020 213

that diminishes the robustness of the network. In the context of SoS development, a change

or a failure of a CS corresponds to the removal of a function (or multiple functions) or

deterioration of functional dependencies. Such change or failure can jeopardize the overall

functionality of the SoS. When a function is removed, its direct dependencies are also

removed. The functional chain is consequently shredded and the overall SoS functionality

may be lost. Similarly, when the functional dependencies are deteriorated, the functional

chain and the overall SoS functionality may be degraded. Two options are considered to

characterize the consequences of a change or a failure undergone by a specific function on

the network. The first option is to consider the number of connected networks and the size

of the largest connected network after its removal; The second option is to compute the

ΔASPL after a deterioration of its direct functional dependencies materialize by a decrease

in the weight of all edges linked to it from 1 to 0.5 (fault variable suggested by (Walsh et

al., 2018)). Since, the aim is to assess the effect of the function deterioration on the overall

robustness of the network, the network is considered undirected and incoming and outgoing

edges are equivalent. Equation 6 reminds the ASPL formula (𝑖,𝑗being the shortest distance

between node i and j).

𝐴 𝑃𝐿 = 1𝑛 ∑ 𝑖,𝑗𝑖,𝑗 ∈⟦ ,𝑛⟧
(6)

The higher the number of connected graphs generated by a function removal; the more

effort can be expected to recover the overall functionality of an SoS. The more extensive

the largest connected network, the more robust the network is to the function removal.

Looking at the ΔASPL, higher values indicate that the function is more “vulnerable”
compared to other nodes in the network. Thus, high ΔASPL indicates that a deterioration
of a function’s dependencies (as a consequence of its change or failure) degrades the overall

SoS functionality.

Both topological dysconnectivity and ΔASPL can be measured after the removal or

deterioration of multiple functions, thus reflecting multiple changes or failures.

4 Network-Base metrics comparison and implications on a use case

We compute the local network-metrics introduced in section 3 on a functional network

corresponding to an SoS related to Electric Vehicles (EVs). A car manufacturer, an energy

provider, and eventually several service providers collaborate to offer EV charging service

(Plug & Charge) in the context of Electric Vehicle to Grid (V2G) services (Chazal, 2018).

Such a service is an SoS as it requires independent systems (CSs) (e.g., EV, charging

stations, electricity grids, and service provision servers) to function together to provide the

EV charging service. Based on the operational and functional descriptions of the service

provision modeled in SysML, we counted 8 CSs performing 22 high-level functions to

provide the service. We construct the functional dependency matrix and the functional

network of the SoS from the available functional chains (Figure 1). Table 1 presents the

values of in- and out-degree centrality and eigenvector centrality measures (influence and

susceptibility score). It also gives the number of connected networks and the size of the

largest connected network after the function removal and the ΔASPL after the deterioration

Part V: Integration Architectures

214 DSM 2020

of the function direct dependencies. In both Figure 2 and Table 2, CSs and CSs functions

are identified by their Ids.

According to the results in Table 2, most functions have the same tendency to propagate

changes and failures to their neighbors. The same tendency can be observed for functions

to undergo a change or a failure when the neighbor functions change or fail (in-degree

equals out-degree for functions 1,2,3,4,5,11,12,15,16,18, and 22). Function 6 highly relies

on its neighbor functions and, as such, is highly susceptible to its neighbor functions

changes and failures. On the contrary, function 10 presents a high out-degree centrality

measure and can cause cascading changes and failures to its neighbors. Since the

considered directed network (Figure 2) does not present cycles and has low connectivity,

influence and susceptibility indicators do not allow to clearly differentiate functions

(function 7 being the most influential and function 6 the most susceptible).

Figure 15. SoS functional dependency matrix and corresponding functional network

Besides, changes or failures of functions with high ΔASPL values (functions 10, 6, and 5,

for example) are likely to degrade the SoS overall functionality. Functions 10 and 19 seem

critical as their removal disconnects the network in 5 and 3 connected networks,

respectively. Such disconnection might involve a significant effort to retrieve the overall

SoS functionality. Both the removals of functions 6 and 7 disconnect the network into 2

connected networks. However, the largest connected networks caused by the removal of

function 7 is larger than that caused by the removal of function 6 (20 and 14 nodes). This

might indicate that the removal of function 6 has a larger impact on the overall network

robustness than the removal of function 7.

Therefore, these measures allow the identification of functions critical to the propagation

of change and failure or functions whose change or failure degrades the overall

functionality of the SoS. During the SoS early design stages, such measures allow the SoS

decision-makers to prioritize the redevelopment of critical functions or allocate them to

CSs of which they control the management and operation. Furthermore, local network-

metrics complemented by global-network metrics can be used to compare different SoS

functional architectures and assess “what-if” scenarios. Thus, network-metrics can aid SoS

decision-makers to identify which SoSs are worth getting involved in. During operation

and runtime, these measures help track the critical functions as the system evolves.

Fakhfakh, Sarra; Hein, Andreas Makoto; Chazal, Yann; Jankovic, Marija

DSM 2020 215

Table 4: Network metrics measures for the considered EV related SoS functional network

Id
In-

degree

Out-

degree

Influence

Indicator

Susceptibility

Indicator
ΔASPL

Nb of

disconnected

networks

Size of the

largest

connected

network

1 0,048 0,048 0 0 0,340 2 17

2 0,048 0,048 0 0 0,279 2 18

3 0,048 0,048 0 0 0,392 2 16

4 0,048 0,048 0 0 0,210 2 19

5 0,048 0,048 0 0 0,435 2 15

6 0,190 0 0 22 0,496 2 14

7 0 0,095 22 0 0,132 2 20

8 0 0,048 0 0 0,045 1 21

9 0,048 0 0 0 0,045 1 21

10 0,143 0,190 0 0 0,517 5 15

11 0,048 0,048 0 0 0,045 1 21

12 0,048 0,048 0 0 0,132 2 20

13 0,048 0 0 0 0,045 1 21

14 0 0,048 0 0 0,045 1 21

15 0,048 0,048 0 0 0,132 2 20

16 0,048 0,048 0 0 0,210 2 19

17 0,048 0 0 0 0,045 1 21

18 0,048 0,048 0 0 0,279 2 18

19 0,095 0,095 0 0 0,409 3 16

20 0 0,048 0 0 0,045 1 21

21 0 0,048 0 0 0,045 1 21

22 0,048 0,048 0 0 0,132 2 20

5 Conclusion and future work

In this paper, we use an SoS functional network and measure degree and eigenvector

centrality to characterize the influence or susceptibility of a function to change and failure

propagation in its direct neighborhood and the network in general. We also assess the

tendency of the SoS to maintain its functionality after a function removal or a function

deterioration. Through an example on an EV related SoS, we show that such measures are

complementary and can aid an SoS decision-maker during the SoS development or

runtime. However, further industrial applications are to be analyzed to confirm the

usefulness of network-metrics. Other network-metrics, including global metrics, can be

used in the analysis of SoS evolution, including changes and failures. Furthermore,

theoretical work is still to be done to better understand the possible uses of graph theory in

SoSs, specifically in terms of results interpretation. This is all the more important as SoSs

involve not only heterogeneous and independent systems and their functionalities but also

independent stakeholders. Therefore, they can be modeled as multilayer networks.

Part V: Integration Architectures

216 DSM 2020

References

Antul, L., Ricks, S., Mann, L., Cho, K., Cotter, M., Jacobs, R. B., … Dahmann, J. (2017). Toward
Scaling Model-Based Engineering for Systems of Systems. 2018 IEEE Aerospace Conference,

1–9.

Chai, C. L., Liu, X., Zhang, W. J., & Baber, Z. (2011). Application of social network theory to

prioritizing Oil & Gas industries protection in a networked critical infrastructure system.

Journal of Loss Prevention in the Process Industries, 24(5), 688–694.

https://doi.org/10.1016/j.jlp.2011.05.011

Clarkson, P. J., Simons, C., & Eckert, C. (2004). Predicting change propagation in complex design.

Journal of Mechanical Design, Transactions of the ASME, 126(5), 788–797.

https://doi.org/10.1115/1.1765117

Fakhfakh, S., Hein, A. M., Chazal, Y., & Jankovic, M. (2020). A meta-model for product service

systems of systems. In Accepted in Design 2020.

Haley, B. M., Dong, A., & Tumer, I. Y. (2016). A Comparison of Network-Based Metrics of

Behavioral Degradation in Complex Engineered Systems. Journal of Mechanical Design,

Transactions of the ASME, 138(12), 1–11. https://doi.org/10.1115/1.4034402

Keating, C. B., & Katina, P. F. (2011). Systems of systems engineering: prospects and challenges for

the emerging field. International Journal of System of Systems Engineering.

https://doi.org/10.1504/IJSSE.2011.040556

Li, Y., Wang, Z., Zhong, X., & Zou, F. (2018). Identification of influential function modules within

complex products and systems based on weighted and directed complex networks. Journal of

Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1396-9

Luo, J. (2015). A simulation-based method to evaluate the impact of product architecture on product

evolvability. A Simulation-Based Method to Evaluate the Impact of Product Architecture on

Product Evolvability. https://doi.org/10.1007/s00163-015-0202-3

Luo, J. (2017). System-of-systems innovation : Proactive methods for conception and strategies for

implementation. Journal of Enterprise Transformation, 0(0), 1–25.

Maier, M. W. (1996). Architecting Principles for Systems-of-Systems. INCOSE International

Symposium, 6(1), 565–573. https://doi.org/10.1002/j.2334-5837.1996.tb02054.x

Mohsin, A., Janjua, N. K., Islam, S. M. S., Vicente, V., & Neto, G. (2019). A Taxonomy of Modeling

Approaches for Systems-of-Systems Dynamic Architectures : Overview and Prospects.
Paparistodimou, G., Duffy, A., Whitfield, R. I., Knight, P., & Robb, M. (2020). A network tool to

analyse and improve robustness of system architectures. Design Science, (May), 1–40.

https://doi.org/10.1017/dsj.2020.6

Petitdemange, F., Borne, I., & Buisson, J. (2018). Modeling system of systems configurations. In

13th Annual Conference on System of Systems Engineering (SoSE) (pp. 392–399).

https://doi.org/10.1109/SYSoSE.2012.6384152

Sarica, S., & Luo, J. (2019). An Infinite Regress Model of Design Change Propagation in Complex

Systems. IEEE Systems Journal, 13(4), 1–9. https://doi.org/10.1109/jsyst.2019.2899988

Sosa, M., Mihm, J., & Browning, T. (2011). Degree Distribution and Quality in Complex Engineered

Systems. Journal of Mechanical Design, 133(10), 101008. https://doi.org/10.1115/1.4004973

Uday, P., & Marais, K. (2015). Designing Resilient Systems-of-Systems: A Survey of Metrics,

Methods, and Challenges. Systems Engineering, 18(5), 491–510.

https://doi.org/10.1002/sys.21325

Walsh, H. S., Dong, A., & Tumer, I. Y. (2018). The role of bridging nodes in behavioral network

models of complex engineered systems. Design Science, 4, 1–28.

https://doi.org/10.1017/dsj.2017.31

Walsh, H. S., Dong, A., & Tumer, I. Y. (2019). An Analysis of Modularity as a Design Rule Using

Network Theory. Journal of Mechanical Design, Transactions of the ASME, 141(3), 1–10.

