
22nd INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING CONFERENCE,

DSM 2020

CAMBRIDGE, MASSACHUSETTS, USA, 13 – 15 October, 2020

DSM 2020 13

Optimizing Distributed Design Processes for Flexibility and

Cost

Marco Daub1, Ferdinand Wöhr1,2, Markus Zimmermann1

1Technische Universität München
2BMW Group

Abstract: This paper considers three different modes of design work that is

distributed over several design parties: independent design (in parallel, no design

interactions, sub-system requirements), dependent design (sequential, one-way

design interactions, updated sub-system requirements) and interdependent design (in

parallel or sequential, two-way design interactions, only system requirements). Each

mode requires particular coordination strategies to be successful. One coordination

strategy is based on requirement formulation: Both system and sub-system

requirements are expressed as so-called solution spaces. Solution spaces represent

sets of permissible designs where sub-system (or component) solution spaces can be

deduced from the system solution space. The larger the size of a sub-system solution

space, the more options for sub-system design decisions satisfying the overall system

requirements exist and thus the larger the design flexibility. The three modes are

applied to two industrial design problems and evaluated with respect to total

flexibility and cost related to iteration steps, interactions between the design parties

and requirement formulation. The resulting framework is applicable to general

systems design problems.

Keywords: Systems Design, Process Architecture, Solution Spaces, Concurrent

Design

1 Introduction

A goal in systems engineering is to break down complexity of the design process in order

to simplify, to accelerate, and to reduce costs. The literature on decomposition strategies is

extensive. However, it is often descriptive and cumbersome to apply to mathematical

design models. In this field, “decomposition-based design optimization”, within
“multidisciplinary design optimization”, in which a systems design problem is usually
decomposed into separate design problems, is predominant, see (Papalambros and Wilde,

2017). Unfortunately, this is often associated with tight component targets with little

tolerance resulting in little robustness and design flexibility. For the purpose of this paper,

flexibility refers to the number (or the size of the set) of design options that satisfy the

overall system requirements.

This can be alleviated using a design approach based on solution spaces. The key idea of

this approach is to consider a set of permissible system designs from which quantitative,

least restrictive subsystem requirements can be derived instead of searching for a single,

optimal system design in the first place. Here, flexibility can be provided for design work

done in parallel, see (Daub et al., 2020; Zimmermann and Hoessle, 2013), or done

Part I: Process Architectures

14 DSM 2020

sequentially, see (Funk et al., 2019; Vogt et al., 2018). By using these methods, also no

iterations on the subsystem design decisions are required if the underlying design model is

accurate enough. For some problems however, flexibility might still be small and coupled

design decisions, which allow iterations combined with interactions between the designers,

would be preferable in order to increase design flexibility. This raises the question of how

to choose and sequence the different types of design decisions for an optimal process

architecture.

In this paper, this question is addressed. Therefore, a review on systems design based on

solution spaces for the different types of design decisions is presented in Section 2. Then,

fundamentals for the assessments of a solution-space based design process are discussed

and a framework to yield an optimal process architecture is proposed in Section 3. It is

applied to problems from the automotive industry, vehicle crash design and battery pack

design, before this paper is concluded in Section 4.

2 Systems Design using Solution Spaces

2.1 Definitions

The focus is put on systems design with mathematical design models and continuous design

variables. Here, there are independent design variables 𝑥𝑖 ∈ ℝ, which are collected in 𝒙 = (𝑥 , … , 𝑥𝑑). The vector 𝒙 ∈ ℝ𝑑 contains all relevant design variables and is named a

system design. In general, the design variable values can be selected, or at least be

controlled, by one or multiple designers. The minimum values which can be chosen for 𝑥𝑖
are denoted by 𝑥ds,𝑖l and the maximum values by 𝑥ds,𝑖u , i.e., 𝑥𝑖 ∈ [𝑥ds,𝑖l , 𝑥ds,𝑖u], 𝑖 = 1,… , .

These bounds form the system design space Ωds ⊂ ℝ𝑑 with

 Ωds = [𝑥ds, l , 𝑥ds, u] × ⋯× [𝑥ds,𝑑l , 𝑥ds,𝑑u]. (1)

For a given design model, each system design 𝒙 ∈ Ωds is associated with specific system

responses. Hence, system responses 𝑧𝑗 ∈ ℝ can be represented as images of a system design 𝒙 by system performance functions 𝑓𝑗, 𝑗 = 1,… ,𝑚, where 𝑚 denotes the number of

relevant system responses. It holds 𝑓𝑗: ℝ𝑑 → ℝ, 𝒙 ↦ 𝑧𝑗 = 𝑓𝑗(𝒙). (2)

There are requirements on the system responses which must be fulfilled by a system design

in order to be permissible. These are formulated as upper threshold values 𝑓c,𝑗. Note that

every lower threshold can be transformed into an upper threshold by multiplying both the

corresponding system performance function and the lower threshold with -1. The set of all

permissible system designs 𝒙 is called complete system solution space Ωc ⊂ ℝ𝑑 with Ωc = {𝒙 ∈ Ωds | 𝑓𝑗(𝒙) ≤ 𝑓c,𝑗 , 𝑗 = 1, … ,𝑚}. (3)

2.2 Independent, Dependent, and Interdependent Design Decisions

In this paper, a distributed design process in which each one designer is responsible for

specifying the value for one design variable is considered. This can be extended to

Daub, Marco; Wöhr, Ferdinand; Zimmermann, Markus

DSM 2020 15

situations in which the design variables are grouped as components and component

designers are responsible for selecting their associated design variable values, see (Daub

et al., 2020; Daub, 2020). Between two designers, there are three different types for the

flow of information about their selected design variable values: No flow of information for

independent design decisions (Mode 1), one-way flow of information for dependent design

decisions (Mode 2), and two-way flow of information for interdependent design decisions

(Mode 3), see (Pimmler and Eppinger, 1994). They are visualized in Fig. 1.

Figure 1. Independent, dependent and coupled design decisions between two designers.

In the following, it is presented how the three modes can be used in the framework of

flexible designing based on solution spaces where the system requirements must be

fulfilled. For reasons of simplicity, only purely independent, dependent, or interdependent

design decisions are considered in this subsection. In the next section, an optimal

sequencing of the design work is discussed.

Independent design decisions can be done in parallel, i.e., simultaneously. This can be

understood as a concurrent engineering approach. For a flexible and independent design

process, independent intervals [𝑥𝑖l, 𝑥𝑖u , in which designer 𝑖 must select the values of 𝑥𝑖 ,
are required. Furthermore, the Cartesian product of these intervals must be a subset of the

complete solution space in order to guarantee a permissible system design, meaning

 [𝑥 l , 𝑥 u] × ⋯ × [𝑥𝑑l , 𝑥𝑑u] ⊆ Ωc. (4)

In general, there are various intervals [𝑥𝑖l, 𝑥𝑖u , 𝑖 = 1,… , , which fulfill Eq. (4). Among

them, the ones that provide the most design flexibility are usually preferred. This flexibility

is quantified, e.g., as the volume of the Cartesian product in (Zimmermann and Hoessle,

2013), or as the minimum interval length in (Fender et al., 2016). An approach that also

considers different uncertainty magnitudes of the design variables is presented in (Daub

and Duddeck, 2019).

Dependent design decisions are taken sequentially, what can be understood as a traditional

or over-the-wall engineering approach. Assuming a consecutive ordering of the design

decisions according to their indices, the required interval [𝑥𝑖l, 𝑥𝑖u , in which designer 𝑖 must

select the values of 𝑥𝑖, depend on the first 𝑖 1 design decisions. Moreover, the interval

[𝑥𝑖l, 𝑥𝑖u must be a subset of the projection along the 𝑖th coordinate axis of the updated

Mode 2a Mode 3 Mode 2b Mode 1

Flow of

information
Designer 1

selects 𝑥
Designer 2

selects 𝑥
independent dependent

Designer 1

selects 𝑥
Designer 2

selects 𝑥
interdependent

Designer 1

selects 𝑥
Designer 2

selects 𝑥

Designer 1

selects 𝑥
Designer 2

selects 𝑥

Part I: Process Architectures

16 DSM 2020

complete system solution space Ωc(𝑥 , … , 𝑥𝑖−), in order to guarantee a permissible system

design regardless of the decision for 𝑥𝑖 ∈ 𝑥𝑖l, 𝑥𝑖u , i.e., [𝑥𝑖l, 𝑥𝑖u] ⊆ proj𝑖 (Ωc(𝑥 , … , 𝑥𝑖−)). (5)

Again, there are various intervals which fulfill Eq. (5), and among them, maximum

flexibility is preferred. If flexibility is quantified as the volume, which corresponds to the

interval length here, [𝑥𝑖l, 𝑥𝑖u is defined by using an equal sign in Eq. (5) if Ωc is connected.

However, other approaches are also conceivable, e.g., when different uncertainty

magnitudes of the design variables are considered, see (Daub, 2020).

In contrast to independent and dependent design decisions, interdependent design decisions

allow each designer to adapt their selection for the design variable values in dependence of

the selection of the other designers. In theory, this may result in arbitrarily many iterations

for the system design. This can be seen as a series of single or parallel design decisions in

which every design variable occurs more than once, see (Devendorf and Lewis, 2011). The

iterations can terminate if the updated system design is permissible.

3 Optimal Architecture for a Solution-Space-Based Design Process

3.1 Problem Statement

There are various decomposition strategies which sequence independent, dependent, and

interdependent design decisions for a solution-space-based design process. In the

following, such a decomposition strategy is denoted by 𝐷 ∈ {𝐷 , … , 𝐷𝑛ps}, where 𝑛ps

denotes the number of possible strategies. If a system design consists of two design

variables for example, there are four possible strategies which are closely related to the

design modes shown in Fig. 1: Designer 1 and designer 2 design independently (𝐷 , mode

1), dependently where either designer 1 (𝐷 , mode 2a) or 2 (𝐷 , mode 2b) starts, or

interdependently (𝐷 , mode 3). The number of strategies 𝑛s increases rapidly with the

number of design variables. In Fig. 2, an example for 𝐷 to obtain a system design with

eight design variables is visualized.

Figure 2. Example to for a decomposition strategy to sequence eight design decisions.

Designer 4

selects 𝑥

Designer 1

selects 𝑥
Designer 2

selects 𝑥
Designer 3

selects 𝑥
Designer 7

selects 𝑥7 Designer 8

selects 𝑥8

Designer 5

selects 𝑥5
Designer 6

selects 𝑥6

Daub, Marco; Wöhr, Ferdinand; Zimmermann, Markus

DSM 2020 17

In addition to a decomposition strategy, a flexibility strategy 𝐹 for optimizing the intervals

[𝑥𝑖l, 𝑥𝑖u , 𝑖 = 1,… , , of a solution-space based design process is required. This can for

example be done by combining the flexibility measures from above. Overall, a design

process that depends on both the decomposition and the flexibility strategy is obtained. As

there are usually reasons or preferences for a specific flexibility strategy 𝐹, like using the

volume as a natural flexibility measure, the focus is placed on finding an optimal

decomposition strategy 𝐷 for given flexibility strategy 𝐹. Here, the subsequent framework

is proposed:

1. Determine the feasible decomposition strategies: Due to the rapidly growing

number of decomposition strategies, with the number of design variables, not all of

the strategies for a solution-space-based design process should be assessed. This is

often not even necessary as the organizational structure with different designers may

not allow to access the full spectrum of strategies. For example, it can be preferable

that designer 1 starts designing if he is required in another project soon, or it might be

difficult for designers to design interdependently due to a complicated communication

infrastructure. The remaining, feasible decomposition strategies are collected in {𝐷 , … , 𝐷𝑛fs}, where 𝑛fs denotes their number with 𝑛fs ≤ 𝑛ps.

2. Define assessment criteria for the decomposition strategies: In order to assess the

feasible decomposition strategies for a design process with a given flexibility strategy,

one or multiple assessment criteria must be defined. In this paper, the (total) design

flexibility 𝜇(𝐷, 𝐹), for which a large value is desired, and the process cost 𝐶(𝐷), for

which a small value is desired, are taken into account. As these two measures should

be defined with respect to the specific application in general, no specific definitions

are provided here. As an example, the total design flexibility can be measured for

example by the average, minimum, or maximum flexibility provided by 𝐹. The

quantification of the process cost can be understood more general, for which, e.g., the

considerations from the first step can be extended. Furthermore, it is also conceivable

to quantify the involved design modes in terms of design flexibility and process cost

directly, see the example in the next subsection. Usually, independent decisions are

characterized by small flexibility and small cost, dependent design decisions by

medium flexibility and medium cost, and interdependent decisions by large flexibility

and large cost.

3. Choose an optimal, feasible decomposition strategy: For 𝑛fs 1, it is necessary to

assess the feasible decomposition strategies in terms of total design flexibility and

process cost to choose an optimal decomposition strategy. As two assessment criteria

are involved here, the goal becomes to find a Pareto optimal, feasible decomposition

strategy that maximizes 𝜇(𝐷, 𝐹) and minimizes 𝐶(𝐷).

In the following, the framework is applied to two simple vehicle design problems, one from

the field of crash design and the other one from the field of battery pack design.

Part I: Process Architectures

18 DSM 2020

3.2 Application to Industrial Examples

(a) Crash design problem, from (Zimmermann and Hoessle, 2013)

The problem of designing a vehicle front structure to account for a front crash load case

against a rigid wall at full overlap is considered, see Fig. 3(a). Here, the structure is modeled

as two sections with deformation lengths 𝑠 and 𝑠 . For each section, it is assumed that

there is a constant force which is necessary to deform this section, and which can be

specified by the designer. This means that there are two designers responsible for two

design variables, 𝐹 and 𝐹 . In order for a system design to be permissible, it must fulfill

requirements regarding the energy absorption, maximum acceleration, and the order of

deformation, i.e., 𝑠 𝐹 𝑠 𝐹 ≤ 𝑚𝑣0; 𝐹 , 𝐹 ≤ 𝑚𝑎c; 𝐹 𝐹 ≤ 0, (6-8)

where 𝑚 is the vehicle mass, 𝑣0 the initial velocity, and 𝑎c is the critical acceleration. The

design space is set as Ωds = 0N, 500kN × 0kN, 500kN , and the parameters as 𝑠 =𝑠 = 0.3 , 𝑚 = 1500kg, 𝑣0 = 15. ms , 𝑎c = 300 ms , cf. (Daub et al., 2020).

(b) Battery pack design problem, simplified from (Wöhr et al., 2020)

The problem of designing a vehicle battery pack, consisting of a thermal cooling system

and a battery system, is considered, see Fig. 3(b). Here, it is assumed that each the

mechanical power of the thermal cooling system 𝑃 and the electrical power of the battery

system 𝑃 can be specified by the designer. This means that there are two designers

responsible for two design variables, again. In order for a system design to be permissible,

it must fulfill two requirements regarding the power difference, i.e., 𝑃 𝑃 ≤ 𝑃cu; 𝑃 𝑃 ≤ 𝑃cl, (9)

where 𝑃u is the critical upper power limit and 𝑃l is the critical lower power limit. The

design space is set as Ωds = 0N, 200kW × 0kN, 500kW , and the power limits as 𝑃cl =150kW and 𝑃cl = 200kW, cf. (Wöhr et al., 2020).

Figure 3. Vehicle crash design problem (a) and battery pack design problem (b).

𝑃 : Battery system

𝑃 : Thermal cooling system

𝑚 𝐹 𝐹
Sec.1 Sec.2

𝑠 𝑠

𝑣0

(a) (b)

Daub, Marco; Wöhr, Ferdinand; Zimmermann, Markus

DSM 2020 19

As both the vehicle crash design problem and battery pack design problem have two design

variables, there are four possible decomposition strategies 𝐷 , … , 𝐷 for each problem, see

above. As above, 𝐷 represents independent design decisions (mode 1), 𝐷 and 𝐷

represent dependent design decisions (mode 2a and 2b), and 𝐷 represents interdependent

design decisions (mode 3). All are considered as feasible here. Moreover, the same

flexibility strategy 𝐹 is considered for the two problems: the volume of [𝑥 l , 𝑥 u] × [𝑥 l , 𝑥 u]
is maximized for independent design decisions, and [𝑥𝑖l, 𝑥𝑖u] = proj𝑖 (Ωc) is set for the first

decision for dependent design decisions. In order to assess the total design flexibility 𝜇(𝐷, 𝐹) for the different decomposition strategies, the volume of the set of system designs

that can be realized is used. It is defined as

𝜇(𝐷, 𝐹) = {vol([𝑥 l , 𝑥 u] × [𝑥 l , 𝑥 u]) for 𝐷 , vol(Ωc) for 𝐷 , 𝐷 , 𝐷 (10)

In Fig. 4, maximum-volume inner boxes [𝑥 l , 𝑥 u] × [𝑥 l , 𝑥 u] are visualized along with the

complete system solution space Ωc. In addition, minimum outer boxes that represent [𝑥𝑖l, 𝑥𝑖u] = proj𝑖 (Ωc) via proj (Ωc) × proj (Ωc) are shown.

Figure 4. Complete system solution space (white) and system design space (blue) including

maximum-volume inner boxes and minimum outer boxes (gray bounds) for problem (a) and (b).

In order to assess the process costs 𝐶(𝐷) of the different decomposition strategies, the cost

for the number of requirement updates 𝑛r, ℎ𝑒 number of design selections 𝑛s, and the

number of interactions between the designers 𝑛i are considered, i.e., 𝐶(𝐷) = 𝑛r(𝐷)Cr 𝑛s(𝐷)𝐶𝑠 𝑛i(𝐷)𝐶i. (11)

For 𝐷 , the requirements are updated for each design variable in the beginning, each design

variable value is selected once, and there is no interaction between the designers, i.e., 𝑛r =2, 𝑛s = 2, 𝑛i = 0. For 𝐷 and 𝐷 , the requirements are updated for each design variable

before selecting their values, each design variable value is selected once, and there is one

interaction in between, i.e., 𝑛r = 2, 𝑛s = 2, 𝑛i = 1. For 𝐷 , there is no requirement update,

𝐹 /kN 𝑃 /kW

𝑃 /kW
 𝐹 /kN

(a) (b)

Part I: Process Architectures

20 DSM 2020

and it is assumed that each design variable value is readjusted once with respect to the

decision for the other design variable value, which requires four interactions to ensure a

permissible system design, i.e., 𝑛r = 0, 𝑛s = , 𝑛i = . Note that this assumption does not

necessarily reflect the reality and is only made for the purpose of comparison here.

Regarding the values of 𝐶i, 𝐶s, and 𝐶r, two different cases are considered:

Case 1: 𝐶r = 𝐶s = 𝐶i = 1 where 𝑛i, 𝑛s, and 𝑛r are weighted the same,

Case 2: 𝐶r = 3, 𝐶i = 𝐶s = 1 where 𝑛r is weighted three times.

For each problem (a) and (b), the values of (𝜇(𝐷, 𝐹), 𝐶(𝐷)) are visualized in Fig. 5 for the

two cases depending on the decomposition strategy 𝐷. Note that all values for 𝐷 and 𝐷

are the same because of the definitions of 𝜇(𝐷, 𝐹) and 𝐶(𝐷), i.e., the order of the

sequencing of dependent design decisions is irrelevant here.

Figure 5. Flexibility and cost (𝜇(𝐷, 𝐹), 𝐶(𝐷)) for case 1 (top row) and 2 (bottom row) depending

on the decomposition strategy 𝐷: independent (𝐷 , square markers), dependent (𝐷 and 𝐷 , triangle

markers), and interdependent (𝐷 , circle markers) for the industrial problems related to crash design

(a, left column) and battery pack design (b, right column). Utopia point is bottom right.

For both problems (a) and (b), the decomposition strategies 𝐷 , 𝐷 , and 𝐷 are Pareto

optimal in case 1 with 𝐶(𝐷) 𝐶(𝐷) = 𝐶(𝐷) 𝐶(𝐷) and 𝜇(𝐷 , 𝐹) = 𝜇(𝐷 , 𝐹) =𝜇(𝐷 , 𝐹) > 𝜇(𝐷 , 𝐹), and the decomposition strategy 𝐷 is Pareto optimal in case 2 with 𝐶(𝐷) = 𝐶(𝐷) 𝐶(𝐷) = 𝐶(𝐷) and 𝜇(𝐷 , 𝐹) = 𝜇(𝐷 , 𝐹) = 𝜇(𝐷 , 𝐹) > 𝜇(𝐷 , 𝐹).

Using this setting for two design variables, there are always two critical cost thresholds for

the requirement updates (𝐶r) above which interdependent design is preferred against

dependent design (threshold 1 for formulae), and preferred against both dependent and

independent design (threshold 2 for formulae, see case 2). Below threshold 2, there are

always two Pareto optimal decomposition strategies, i.e., it is a trade-off between

maximum flexibility (interdependent design, between threshold 1 and 2; dependent design,

below threshold 1, see case 1) and minimum process cost (independent design).

(a) (b)

𝐶(𝐷)

0

5

10

0 10.000 20.000 30.000

Case 1

𝜇(𝐷, 𝐹) (kN)

0

5

10

0 5.000 10.000 15.000

Case 2

𝜇(𝐷, 𝐹) (kW) 𝜇(𝐷, 𝐹) (kN) 0

5

10

0 10.000 20.000 30.000

Case 2

𝐶(𝐷) 𝐶(𝐷)

0

5

10

0 5.000 10.000 15.000

Case 1

𝜇(𝐷, 𝐹) (kW)

𝐶(𝐷)
Design flexibility

P
ro

ce
ss

 c
o

st

Daub, Marco; Wöhr, Ferdinand; Zimmermann, Markus

DSM 2020 21

The presented results were obtained using strong assumptions about the cost coefficients 𝐶r, 𝐶s and 𝐶i, and the number of required design actions 𝑛r, 𝑛s and 𝑛i. In particular the

latter will probably be highly dependent on the actual design problem under consideration.

A strongly nonlinear problem subject to many constraints with an intricate solution space

geometry is more likely to require a large 𝑛s and 𝑛i. This is currently being explored in

parallel work, see e.g. (Wöhr et al., 2020). Regardless of the concrete numbers, these two

very simple examples show a mechanism that makes the most structured design approach,

i.e., independent design, preferable: when the cost of iteration and interaction outweighs

the cost of requirement formulation and loss flexibility due to decomposition. The most

unstructured approach, i.e. interdependent design, is preferable, when iteration and

interaction are cheap.

4 Conclusion

In this paper, a framework to obtain optimal process architectures for a solution-space-

based design process was proposed. Here, feasible sequencings of independent, dependent,

and interdependent design decisions are viewed as decomposition strategies and are

assessed. This assessment is done by considering maximum design flexibility and

minimum process cost, which yields Pareto optimal decomposition strategies, i.e., Pareto

optimal process architectures. The framework was applied to two simple industrial design

problems for which a dependence of the Pareto optimal decomposition strategies on the

cost of the requirement updates was detected. The general structure of the framework offers

its application to more complex design problems with multiple design variables for which

more differentiable results are expected, as well. Furthermore, realistic costs of the

different decomposition strategies should be investigated, and the quantification of the total

design flexibility must be clarified in order to obtain useful Pareto optimal process

architectures.

References

Daub, M., 2020. Optimizing Flexibility for Component Design in Systems Engineering under

Epistemic Uncertainty. Ph.D. thesis. Munich, Germany.

Daub, M., Duddeck, F., 2019. Maximizing Flexibility for Complex Systems Design to Compensate

Lack-of-Knowledge Uncertainty. ASCE-ASME Journal of Risk and Uncertainty in

Engineering Systems: Part B. Mechanical Engineering 5 (4), 41008.

Daub, M., Duddeck, F., Zimmermann, M., 2020. Optimizing Component Solution Spaces for

Systems Design. Structural and Multidisciplinary Optimization.

Devendorf, E., Lewis, K., 2011. The Impact of Process Architecture on Equilibrium Stability in

Distributed Design. J. Mech. Des. 133 (10), 1.

Fender, J., Duddeck, F., Zimmermann, M., 2016. Direct computation of solution spaces. Struct

Multidisc Optim 55 (5), 1787–1796.

Funk, M., Jautze, M., Strohe, M., Zimmermann, M., 2019. Sequential Updating of Quantitative

Requirements for Increased Flexibility in Robust Systems Design. Proc. Int. Conf. Eng. Des. 1

(1), 3531–3540.

Papalambros, P.Y., Wilde, D.J., 2017. Principles of optimal design: Modeling and computation.

Cambridge University Press, Cambridge, UK, 1 volume.

Part I: Process Architectures

22 DSM 2020

Pimmler, T.U., Eppinger, S.D., 1994. Integration analysis of product decompositions. Proceedings

of the 6th International Conference on Design Theory and Methodology Conference,

Minneapolis, USA, September 1994.

Vogt, M.E., Duddeck, F., Wahle, M., Zimmermann, M., 2018. Optimizing tolerance to uncertainty

in systems design with early- and late-decision variables. IMA Journal of Management

Mathematics 30 (3), 269–280.

Wöhr, F., Königs, S., Ring, P., Zimmermann, M., 2020. A Role-Activity-Product Model to

Simulate Distributed Design Processes. Proceedings of the 22nd International DSM

Conference (DSM2020), Montreal, Canada.

Zimmermann, M., Hoessle, J.E. von, 2013. Computing solution spaces for robust design. Int. J.

Numer. Meth. Engng 94 (3), 290–307.

Contact: M. Daub, Technische Universität München, Arcisstr. 21, 80333 Munich, Germany,

marco.daub@tum.de, ferdinand.woehr@tum.de, zimmermann@tum.de

mailto:zimmermann@tum.de

