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Abstract 

How does previous experience and learning influence a team’s ability to successfully agree on a system 

architecture, team roles and responsibilities, and design method? Migration of team members leads to 

diversity in past experiences and beliefs, which might have a positive or negative affect on team 

decision-making. Using computational modeling of self-managed teams across multiple project life 

cycles, we perform controlled experiments to evaluate performance and decision-making patterns of 

migrating vs. non-migrating teams. We find that there is no difference in mean performance, indicating 

that neither approach is intrinsically better. However, statistical tests of paired trials shows a meaningful 

an advantage for migrating (diverse) teams. Examining patterns of decision-making over time reveal 

that migrating (diverse) teams explore a wider range of team-level decisions, which makes them more 

adaptable in specific circumstances. 
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1 INTRODUCTION 

Many approaches to improving engineering design productivity depend on making changes to team 

structure, processes, or methods. In this research we examine the influence of team diversity on decision-

making, specifically decisions on system design, roles and responsibilities, and design methods.  

For example, consider an electrical appliance design team that is making the transition from traditional 

design (a.k.a. “Traditionalist”) to Design for Sustainability (a.k.a. “Green”) (Wever et al., 2008; Verhulst 

and Boks, 2012). In traditional design, team goals include product performance and functionality, unit 

cost, styling, production volumes, and design project schedule. Design for Sustainability introduces 

lifecycle goals such as reducing electricity consumed over the life of the appliance and reducing or 

eliminating end-of-life waste. To meet these goals, designers might introduce features that create new 

dependencies between subsystems, which in turn might require more or different collaboration between 

engineers on those subsystems. These new dependencies might also make it more difficult to meet the 

other goals. For these reasons, Design for Sustainability is often promoted through new design processes 

and methods (Bhamra et al., 2011). 

Individual team members also influence the way a team works through their past experiences, beliefs, 

expectations, and patterns of social interaction. This is called ‘situated social cognition’ (Smith and 

Gero, 2005) or ‘distributed cognition’ (Nardi, 1996). When designers work together over an extended 

period, they tend to internalize a common way of working and thinking, though not necessarily identical. 

(For a survey of small group coordination, management, and work, see Chidambaram and Bostrom 

(1996)). Of particular importance for our research is the Time, Interaction, and Performance (TIP) theory 

of groups (McGrath, 1991), which emphasizes the temporal processes involving task performance by 

individuals and group interaction among individuals. 

Organization context is also important. Large organizations often have many design teams with different 

ways of working, and especially if they are in separate business units or divisions. What happens when 

designers migrate to new teams with very different ways of working and thinking? In our example 

above: What happens when one or more “Traditionalist” designers joins a “Green” team, or vice versa? 

Generally, we can imagine three possible outcomes. First, the design team might be negatively affected 

if there is excessive conflict or disruption due to the new members and their different ways of working. 

Second, the design team might be positively affected if there is synergy or constructive interaction 

between the established ways of working and the new member’s ways. Third, there might be no 

significant change, especially if the new member is quickly acculturated and otherwise does not affect 

how the team works or thinks.  

Productivity and teamwork effects manifest in many ways, and there is extensive literature on how team 

diversity affects cohesion, conflict resolution, gender issues, etc. For example, a number of researchers 

have studied the effects of membership changes and dissent (Akgün and Lynn, 2002; Dreu, 2002; 

Hansen and Levine, 2009; Hirst, 2009; Rink et al., 2013; van der Haar et al., 2015). Knowledge 

acquisition and knowledge sharing in small teams has been studied by Walz, Elam, and Curtis (1993) 

and Reagans, Argote, and Brooks (2005). Cross (2004) organizes a review of research on team design 

and project lifecycles into three distinct categories: 1) problem formulation, 2) solution generation, and 

3) process strategies. Our work focuses on problem formulation and process strategies, with solution 

generation modelled abstractly as an evolutionary search process (Metcalfe 2007). Notably, there has 

been only a little research (e.g. Singh, Dong and Gero, 2011) on how team heterogeneity affects design 

and process decisions. The scope of this research needs to include cognitive process of ‘reflexivity’ 

where agents perceive and reason about their own behaviour, including their cognitive processes, i.e. 

meta-cognition (Schippers et al., 2007). (Note: “reflexivity” is the term that has been adopted in the 

literature even though “reflectivity” is more accurate etymologically).  

This leads to our research question: How does previous experience and learning influence a team’s 

ability to successfully agree on a system design, team roles and responsibilities, and design method?  

The paper is organized as follows. Section 2 describes our research method – computational modelling, 

simulation, and controlled experiments. Section 3 presents an overview of our computational model and 

simulations. Section 4 presents experiment results with analysis. The paper closes with Section 5, a 

discussion of findings, implications, limitations, and extensions.  
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2 METHOD 

We use agent-based modeling (ABM) as our general approach to computational modeling, along with a 

cognitive architecture for Designer agents. In ABM, behavior of the system as a whole is governed by 

interactions between relatively autonomous agents who act locally and who learn from experience. We 

have chosen to model a design task environment at a fairly abstract level because we are primarily 

concerned with how Designers reflect on their task-level experience, form beliefs, and use those beliefs 

in collective decision-making. 

This approach has two advantages. First, it allows us to perform randomized controlled experiments that 

are similar to laboratory human subject experiments. Second, computational experiments are not limited 

in scale, scope, or measurement accuracy, compared to human subject experiments. Studying two or 

more design teams over multiple project lifecycles would not be feasible in a laboratory setting. 

We model Designer cognition using the ECHO model (Thagard, 1989). ECHO is a connectionist 

computational model of the Theory of Explanatory Coherence (Thagard 2000), which is a general theory 

of how people make sense of their world and each other. The theory has been applied to reasoning by 

scientists and scientific theories, including conceptual revolutions (Thagard, 1992, 2012) and has been 

supported by empirical research (Schank and Ranney, 1991). ECHO is a limited model of cognition 

because it omits perception, affect, and many other capabilities. The advantage of a limited model is 

that it simplifies implementation, testing, and experimental validation.  

We model design work as an evolutionary search process over a rugged landscape of possible design 

decisions (Metcalfe, 2007). This is a “black box” approach that abstracts away from the conceptual 

details of design work, and frames design as bounded-rational process of making interdependent design 

decisions. This approach has been used to study organization decision-making (Ethiraj and Levinthal, 

2004). This modeling approach creates an artificial world that glosses over many real-world phenomena 

and processes, including creativity, conflict resolution, and the role of domain knowledge. On the plus 

side, this modeling approach is computationally difficult for our Designer agents, individually and as 

teams, and therefore it is sufficient to provide the environment in which to study agent reasoning and 

collective decision-making. It also has an experimental advantage in that it is straightforward to 

randomly generate performance landscapes using a few parameters.  

3 COMPUTATIONAL MODEL 

This section provides an overview of our computational model, emphasizing the architecture and 

functional significance of key aspects.  

3.1 Project Lifecycle 

A project lifecycle (Figure 1) consists of all phases of design, starting with team formation and ending 

when a project is completed. When a team forms, Designers engage in a collective decision-making 

process to decide on 1) product architecture, 2) design process, and 3) assignment of roles. Assuming 

they can make a consensus decision, each Designer then performs design tasks until the design goal is 

reached or until the time limit for the project is reached. Each Designer then collects evidence from their 

experience and updates their mental model of the design process. At the end, some Designers migrate 

to other teams and the lifecycle repeats. 

3.2 Computational Architecture 

The computational architecture consists of three entities: Teams, Designers, and the Performance 

Landscape. 

3.3 Teams 

Teams are collections of Designer agents who perform a single design project lifecycle. There are four 

teams that operate simultaneously and synchronously, but are otherwise independent of each other. The 

total number of teams is not critical to the experiment results, other than to provide diversity of 

experiences for Designers.  

In Pre-design, Designers engage in collective decision-making process in order to decide on system 

architecture (see Section 4.5, below), design process, and role assignments.  
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Figure 1. Design Lifecycles 

3.3.1 Pre-Design Team Decisions 

Collective decision-making is performed using the following iterative protocol: 

1. Each Designer, randomly and in turn, proposes a system architecture, design process, and role 

assignment. 

2. All Designers evaluate the proposal using their conceptual model of design (see Section 3.4). 

3. All Designers respond with either Approve, Reject, or Abstain (i.e. indifferent). 

4. A proposal is accepted if there is at least one Approve and no Rejects. 

5. Repeat until a proposal is approved or a time limit is reached (10 cycles). If the time limit is reached, 

then a random choice is made for all alternatives. 

3.3.2 Design Process Decision 

The design process has three parameters that govern the evolution process (see Section 3.3.5): 

1.  E = {evolve, do_not_evolve}. 

2. e_start = when to start the evolution process; discrete choices = {0, 20, 50}. 

3. e_period = how frequently to perform the evolution process; discrete choices = {1, 5, 20}. 

3.3.3 Role Assignment Decision 

There is a single parameter for role assignments: R = {random, systematic}. Designers can either be 

assigned decisions randomly, or can be assigned systematically, one to a subsystem. The advantage of 

assigning randomly is speed – the Team can start designing right away. If the Team chooses systematic 

assignment, it has the advantage that each Designer will have complete control over the interdependent 

decisions in that subsystem and thus be better able to search for the best decision combination. This 

comes at a cost of time at the start of the project, where Designers have to spend s = 20 periods to do 

the role assignment and are not able to start design work. 

3.3.4 Design Phase: Design Work 

After Pre-design is complete, Teams perform design work until the project time limit is reached (set 

experimentally). This is implemented using a population of T = 100 “Team Threads”, each consisting 

of five “Design Threads”. (The term “thread” comes from computer engineering, meaning a block of 

code that executes independently and potentially in parallel with other threads.) Each Team Thread has 

a randomly initialized design decision vector. We can think of these as 100 independent lines of 

investigation and analysis in the design space. Each time step in the simulation, each of the five Design 

Threads performs one step in a search process over possible design decisions. Each Design Thread 

decides to keep the proposed decision if it (locally) improves performance. Because of 

interdependencies, this process does not necessarily result in monotonic increase in performance. 

Indeed, the more dependencies and the more designers involved in those dependencies, the more likely 

it is that subsystem and total system performance will go through periods of decline. 

3.3.5 Evolution Process 

If a given Team has chosen E = evolve, then the population of Team Threads is modified by an evolution 

process, starting after steps = e_start, every e_period steps. Evolution is performed by probabilistic 
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replication, where probability of being selected for replication is proportional to current system 

performance. The size of the population stays fixed and no new variants are introduced. Thus, 100 draws 

are made from a roulette-style mechanism. This has the effect of increasing search activity in the 

neighbourhood of currently attractive decision sets. However, given the size and complexity of the 

Performance Landscape, there is a risk associated with choosing E = evolve, and also starting too soon 

or doing it too frequently, namely that the Team will not allow sufficient time to search for and find 

truly attractive decision sets. Conversely, if a Team choses E = do_not_evolve, there is a risk that its 

design efforts will be too diversified and not concentrated enough to find the best decision sets. 

Designers can only learn about these trade-offs through experience, and since their experiences may 

differ, they can arrive at different conclusions and beliefs. 

3.3.6 Post-Design Phase 

After a design project is completed, the total system performance is computed and each Designer records 

evidence from their experience, including an evaluation of whether the project was a “Success” or 

“Failure”. For parsimony, “Success” is defined as exceeding the average of the previous lifecycle results 

for all Teams, using a Cobb-Douglas function for team performance U that combines design 

performance p and project completion time t (i.e. number of steps to reach final/steady state system 

performance). Conversely, “Failure” is performance that is below the previous average team 

performance. The parameters α and β are chosen to give equal weight to design performance and time 

to completion. C is a scaling constant chosen to set expected U = 100. 

𝑈 = 𝐶×𝑝𝛼  × 𝑡𝛽 (1) 

The primary experimental parameter (see Section 5) is M = {migrate, do_not_migrate}. When M is set 

to migrate, teams are selected for migration (Pr(m) = 0.2) or to stay together (Pr(mʹ) = 0.8) to form a 

new Team and repeat the design project lifecycle. If a Team is selected for migration, then another Team 

is selected randomly to swap one team member, both randomly selected. Over several lifecycles, this 

migration process results in teams with heterogeneous experiences and beliefs. If M is set to 

do_not_migrate, then there is no mixing and thus Teams will consist of homogenous Designers. 

3.4 Designer Agents 

Designers have three sets of capabilities. First, they have the capability to perform design work as 

described in the previous subsection. During the Design Phase of a project, each Design agent will have 

one “Design Thread” per “Team Thread”, or 100 in total. These represent individual “lines of 

investigation” in the design space assigned to that Designer. 

The second capability is to adapt a “mental model” of the design process based on their individual 

experience. “Mental models” are implemented as explanatory networks using the ECHO system 

(Thagard, 1989; 2000). These models are networks of explanatory relationships between hypotheses and 

evidence, modulated by the “strength of activation”. A partial example is given in Figure 2, showing an 

evaluation of two proposals for system architecture. 

The structure of the ECHO models is fixed and set by experimenters, and therefore what each Designer 

agent adjusts are the activation strengths. In Section 5, we discuss model extensions where the structure 

of mental models is determined endogenously. 

A key feature of these mental models is that they permit each Designer to evaluate hypothetical 

situations that may not yet have been experienced or that go against what has been experienced 

(“counterfactual”). While accumulating more experience, especially diverse experience, will result in 

more refined mental models, we cannot say that mental models converge toward a true and accurate 

model of the Designer’s world and choice space. Instead, it is better to view a given mental model as 

that Designer’s beliefs about the choice space, given experience and given the limitations of the mental 

modeling system. 

3.5 Performance Landscape of Design Decisions and Dependencies 

Design decisions are represented abstractly is a fixed-size vector of N binary choices, where N = 50. 

Designs are divided in to five equal sized subsystems, so that each subsystem consists of 10 

interdependent decisions. Before they start design work, Teams collectively decide on the product 

architecture, which has four possibilities, shown in Figure 3. 
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Figure 2. a) An example of Designer’s mental model for product architecture decisions, 
evaluating two proposals. In b) Proposal #1 is accepted because Designer assumes 
“Hierarchical”. The modified proposal in c) specifies “Nonhierarchical” and is rejected 

 

 

Figure 3. System architectures, displayed as design dependency matrices  
(Ethiraj and Levinthal 2004) 

To encode the full size of the Performance Landscape, we concatenate the dependencies to each design 

decision. For example, if the decision vector was of length N = 4 and each decision had two 

dependencies, then the encoded binary string would be 4 × 3 = 12 bits long. The landscape is generated 

at initialization time by generating a random performance value, Uniform(0,1), for each possible 

encoded binary string. However, only a fixed proportion of design decisions are “viable”. In all 

experiments, the viability proportion is 0.2. Non-viable alternatives have their performance de-rated by 

99%. This feature is useful to reward explicit search over alternatives and penalize Designers who are 

ignorant of design dependencies.  

The performance of the system as a whole is the average of the performance of the individual 

subsystems, which are in turn the average of the performance values of the individual decisions in that 

subsystem. Alternative performance functions are discussed in the final section of the paper. 

4 RESULTS 

This section describes computational experiments and results of those experiments. Prior to running 

these experiments, the simulation model was run many times to explore the effects of various parameters 

(e.g. relative performance of alternative system architectures, effects of evolution, and changing the 

number of Designers per Team and number of Teams.). These explorations were used to set the 
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simulation parameters that were not varied in the experiments, especially viability proportion v = 0.2, 

length of design project max_steps = 100, and discovery rate for dependencies d = 0.002. 

4.1 Experiment Design 

Two treatments were evaluated using controlled, randomized simulation realizations – the treatment 

group Migration; and the control group No Migration. 

Each trial (i.e. run) consists of 6 design lifecycles, with each lifecycle consisting of 100 steps of design 

work. 

The number of trials for each treatment was 100. Both treatments used the same set of random number 

seeds. The implementation used a single set of random number generators for each run, and therefore 

using a given random number seed produces repeatable results and also creates identical initial 

conditions for each treatment. For the primary dependent variable U (Equation 1), this approach allows 

two types of statistical hypothesis testing: 

• Student t-test to evaluate differences in mean results between the two treatments. 

• Paired t-test to evaluate mean differences in pairs of trials that have the same random seed. 

We are also interested in understanding whether the pattern of Team decisions differs between the 

treatment groups. In other words, do Teams that migrate make different Team-level decisions compared 

to those who don’t? To answer this question we look for significant differences in frequency for various 

Team-level decisions and also differences over the course of trials. 

4.2 Results: Total Performance U  

Figure 4 shows results of Student t-test to evaluate differences in mean performance in trials for the 

treatment (Migration) vs. control group (No Migration) for the dependent variable U, summed over 6 

lifecycles in each trial. These results show that the null hypothesis (no difference in trial means) cannot 

be rejected. This result indicates that in general there is no performance advantage provided by team 

diversity, where “in general” means across many possible Performance Landscapes. 

Figure 5 shows results of Paired t-test to evaluate mean differences from paired trials between the 

treatment and control groups for the dependent variable U, summed over 6 lifecycles in each trial. In 

contrast to the previous test, the Paired t-test, Figure 6, does reject the null hypothesis of no mean 

difference. 

This result indicates that there are circumstances where team member migration has advantages, at least 

when measured by total team performance U. To understand these circumstances we must examine the 

frequency and pattern of team-level decisions. 

 

 

Figure 4. Density plot of average performance (U) per trial for treatment vs. control.  
(Welch Two Sample t-test: t = 0.885, df = 182.3, p-value = 0.377) 
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Figure 5. Density plot of paired differences: Migration – No-migration 
(Paired t-test: t =3.828, df =99, p-value = 0.0002) 

4.3 Results: Team-level Decision Frequency and Patterns 

Figure 6 shows the frequency of team-level decision sets for Migration vs. No Migration. Referring to 

Section 3.3 above, a team-level decision set D consists of a tuple, where A is the System Architecture in 

the form of a Design Dependency Matrix, E = {evolve, do_not_evolve}, and R is role assignments: 

{random, systematic}: 

D = {A, E, e_start, e_end, R} (2) 

There are 135 possible members in the decision set D, and thus it is infeasible for any given team to 

explore the full space of possibilities in any single run. 

Examining these results we find that that the treatment group (Migration) use a wider range of team-

level decisions compared to the control group (No Migration). Most of the team-level decisions in the 

No Migration group are concentrated in a few alternatives. Furthermore, when we inspected time-series 

data for individual teams and runs, we saw evidence that teams in the No Migration group settled into 

team-level decisions that did not change, even when they occasionally did not perform well. In contrast, 

team-level decisions in the Migration group changed more frequently, even when this lead to periods of 

under-performance. 

Figure 6. Frequency of the number of distinct decision sets D for each team in each run. 
100 runs in each treatment 
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These dynamics help explain the results in Section 4.2. Both the Migration and No Migration groups 

were subject to periods of under-performance but for different reasons. Teams in the No Migration group 

tended to stick with the same team-level decisions even when they under-performed, while Teams in 

Migration group tended to explore alternative team-level decisions at the expense of under-performance. 

This results in approximately the same mean total performance U over all trials, but a significant 

difference in paired trials. 

5 DISCUSSION AND FUTURE WORK 

We have used a computational model of team design with migration to examine a challenging research 

question regarding the effects of diversity on team decision-making and performance over several 

product lifecycles. Though our computational model is abstract and idealized in several respects, it has 

allowed us to test hypotheses that would not be feasible with human subjects in a laboratory or through 

field case studies.  

5.1 Findings and Significance 

The results in Section 4 provide qualified support for the hypothesis that heterogeneity of team member 

background, experience, and beliefs increases a team’s ability to explore and experiment at a team-level, 

specifically regarding system architecture, design process, and role assignments. However this is not an 

unmitigated advantage because of the exploration/exploitation trade-offs that are inherent in any 

complex setting. The most favourable settings for team diversity are those that feature an 

unknown/unexplored or highly dynamic design space because diverse teams explore a wider range of 

team-level decisions. It is in these settings that organizations should promote migration of designers 

between teams to achieve that diversity. 

5.2 Extensions to the Current Model 

As mentioned in the sections above, the current model has many idealizations and simplifications that 

can be modified or extended. Here we discuss a few that have been tested or considered. 

One extension would be to have alternatives and diversity in performance functions that relate individual 

decisions to subsystem and system performance. The current model uses average performance, and this 

is consistent with the model of Ethiraj and Levinthal (2004). A richer and more realistic model would 

have a variety of functions such as min (“weakest link”), max (“best effort”), threshold, and even 

multiplicative or nonlinear functions.  

Another extension would be to add sophistication to the Designer’s mental model. The current model 

uses only a small set of features and capabilities of the ECHO system. For example, ECHO has the 

ability to incorporate “analogous” predicates for analogical reasoning, which could be useful in 

modeling a framing discourse among Designers in the Pre-design phase. We could also add predicates 

related to social relationships and reputations among Designers. 

While the abstract Performance Landscape used in this paper has advantages, it also has disadvantages. 

We as experimenters must explicitly define the performance of each decision set and also the 

performance function to aggregate decisions to subsystem and system-level performance. A significant 

change to this model would be to replace the Performance Landscape with a virtual world of Artefacts 

and design decisions that produce those Artefacts, along with Consumers who evaluate Artefacts 

according to their values and preferences. This would allow us the study the effects of team diversity 

and team decision-making in a more natural setting. 
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