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Abstract 

To reduce uncertainty in decisions, engineers experiment with models, such as, exploring what-if 

scenarios, and thus increase knowledge. Still, because modelling is an idealisation of reality, there is 

often substantial uncertainty involved, and this decision makers less confident to lean onto models alone 

when making decisions. The aim of this paper is to conceptualize a design support for improving 

confidence and validity in models, by communicating uncertainties from modelling and simulation to 

relevant stakeholders. The paper reports on empirical data from a research profile workshop. The 

findings illustrate the importance of communicating uncertainties from models between relevant 

stakeholders in order to drive action. The paper then presents an approach to visualize model maturity 

levels as well as impact levels in relation to one or several aggregated models. With this approach, focus 

can move to discuss the knowledge about the knowledge that is created from modelling, and to facilitate 

discussions on a meta-level about the modelling and simulation. This is exemplified by a test scenario 

where a multi-disciplinary modelling and simulation of an asphalt roller is presented. 
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1 INTRODUCTION 

Product development is an iterative decision process (Ullman, 2001), which is characterised by 

uncertainty and ambiguity (Stacey and Eckert, 2003), and thus with associated risks due to imperfect 

knowledge. This is even more pronounced early in the process as well as when dealing with multi-

disciplinary products, which combines knowledge bases from multiple domains (e.g., mechatronic 

products), where information is scarce and even conflicting. Often modelling and simulation (M&S) is 

used to build on the knowledge base. M&S is used to analyse and test ideas long before building the 

first prototype (Walter et al., 2014). It allows testing many more ideas and concepts at a lower cost. This 

way of supporting design decisions throughout the product development process with M&S is referred 

to as simulation-driven design (SDD) (Wall, 2007). As models are abstractions of reality, modellers 

make simplifications, assumptions, and idealisations. This is essential in modelling and, as a 

consequence, models are uncertain (Walter et al., 2014). This is further accentuated with recent trends 

in modelling, where intangible aspects such as, value (Isaksson et al., 2013) and sustainability (Bertoni 

et al., 2015), are included, which increases uncertainty. Still, firms want to base more decisions on M&S, 

allowing them to perform fewer physical experiments. There is a need (Simpson and Martins, 2011) to 

deal with uncertainties when modelling; How can decision makers improve confidence in their models? 

The aim of this paper is to explore ideas how trust and confidence in models can be supported in the 

early design phases. The paper first reviews previous works on uncertainty, modelling validation, and 

model maturity constructs. Thereafter, empirical information from a workshop with industrial 

practitioners is presented to investigate the need of integrating support for simulation in the development 

process. Next a decision support for how uncertainty of models could be communicated within a cross-

functional team is presented. The preliminary support, with main functionalities and appearance, is 

exemplified by an application on an industrial case. Finally, the discussion as well as conclusions and 

future work centres on needs for development and further research to arrive at a design and decision 

support tool in use with the simulation models. 

2 RESEARCH APPROACH 

The approach for this work has been centred around a case study approach (Yin, 2003). Empirical data 

has been collected via a workshop in a research project on model-driven development and decision-

making. Participants to the workshop were industrial experts who are working in roles that relate to 

management of model-driven efforts in their respective firms, including collaboration with academia to 

strengthen their capabilities in the area of SDD. They are therefore driving development and introduction 

of modelling capabilities in their firms. The main aspect of interest during the workshop was on how to 

enable the industrial adoption of the models developed in research, where trust and model fidelity are 

commonly expressed barriers. Problems in the current situations as well as wishes for the future was 

discussed. The data has been collected using field notes and reflections, which was then distributed to 

the participants of the workshop discussion for verification and their opportunity to change statements. 

From this, the researchers have elaborated on a decision support by ways of various ideations, focusing 

on conceptual constructs as well as visualisations. 

3 THEORETICAL BASIS: TRUST IN MODELS AND KNOWLEDGE LEVELS 

To reduce uncertainty in decisions, engineers experiment with models, exploring what-if scenarios, to 

increase knowledge. Neelamkavil (1987) defines a model as “… a simplified representation of a system 

intended to enhance our ability to understand, predict and possibly control the behaviour of the system.” 

In engineering science, two broad categories of models are identified; physical models (e.g., scale 

models) and virtual (symbolic) models (e.g., mathematical models). With increasing computational 

power, and developments of algorithms and software, more and more engineering problems is studied 

using mathematical models (hereafter referred to simply as models). 

The same system may be represented with sufficient accuracy by models of different fidelity (i.e., 

detailed representation of what is modelled), where the investigation objectives decide which fidelity is 

suitable (Clay et al., 2008). The investigation objectives should therefore be specified unambiguously. 

Thereafter, a suitable experimental frame can be developed, with a specification of the conditions to 

study (Zeigler et al., 2000). The modelling process aims at developing a model that mimics the studied 
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system with sufficient accuracy in the specified experimental frame. However, the experimental frame 

and required model fidelity naturally looks different depending on the current status of the development 

process. Early on, models of low fidelity are typically deployed while models of higher fidelity are used 

in later stages. 

3.1 Uncertainties and unknowns 

Uncertainty is absence of certainty, or knowledge – meaning it is about unknowns. Here it is possible to 

distinguish between known-unknowns and unknown-unknowns, between uncertainty and ambiguity, 

respectively (Carleton et al., 2008),  distinguishing between whether we know or do not know which 

parameters to find. Uncertainty can also be described as aleatory or epistemic (Hofer, 1996). Aleatory 

uncertainty (Walter et al., 2014) is the variance of having a certain information value, although the exact 

value is mathematically described and statistically estimated with a probability distribution, originating 

from randomisation. Epistemic uncertainty comes from incomplete, insufficient, and non-existing 

information and knowledge, depicting lack of knowledge. It can be reduced and turned into aleatory 

uncertainty by doing research activities. These can also be related to stochastic uncertainty (quantified 

according to probability theory), estimated uncertainty (with known effects, but difficult to quantify 

fully), and unknown uncertainty (not possible to quantify) (Engelhardt et al., 2011). A major source of 

uncertainty are users and their perceptions, which means that simplifications, idealisations, and 

abstractions, which are central to modelling, will drive uncertainty (Walter et al., 2014). There are four 

types of uncertainties in M&S, relating to both aleatory and epistemic uncertainty concepts, in 

simulation (Walter et al., 2014); data uncertainty (i.e., variance and vagueness), M&S uncertainty (i.e., 

idealisation, modelling as well as human errors), phenomenological uncertainty (i.e., unknown-

unknowns), and uncertainty in human behaviour (i.e., interpretation, decision maker, and ambiguity in 

declarations). Funtowitz and Ravetz (1990) introduce the concept of pedigree to assess uncertainty in 

the knowledge by use of qualitative expert judgment in their NUSAP method. Reducing uncertainty, 

involves gathering information about variables that are known to the problem solvers, whereas reducing 

ambiguity is about model building, negotiation, problem framing, evaluating and reframing, and model 

testing (Schrader et al., 1993). Previous research (Wall et al., 2011) shows that an all-at-once approach 

to simulating multi-disciplinary systems, simultaneously considering all relevant disciplines and 

aspects, is superior to sequential approaches. In such interlinked multi-level model hierarchy, the 

problem will be more pronounced as uncertainties and associated risks propagate through the model 

hierarchy. 

3.2 Simulation validation and verification 

Model validation is important, because used as decision support, models must be perceived as 

trustworthy (Walter et al., 2014). Definitions of the terms ‘verification’ and ‘validation’ are by no means 

consistent, neither in practice nor in literature. Verification, as used here, is the process of determining 

if the model works as intended, that is, that model coding and implementation is done correctly. 

Validation, as used here, is a measure of usefulness in relation to the investigation objectives. These 

processes are vital for models to be trusted as support for design decisions (Sargent, 2011). 

The model maturity constructs (i.e., (Clay et al., 2008; Oberkampf et al., 2007; Anon, 2008)) reviewed 

in this paper explicitly advocate validation and verification as a part of improving the model maturity 

levels, thus also indicating that the problem is complex and dependent on more factors. 

Harmon and Youngblood have suggested a simulation validation process (Harmon and Youngblood, 

2005), which is based on levels, similar to CMMI (Anon, 2011). These process levels range from 

initial/subjective validation through objective activities to automated validation. 

3.3  Model maturity 

In literature, most maturity constructs stem from two main streams; either the product-/systems-focused 

Technology Readiness Levels, TRLs (Mankins, 1995), which was developed by NASA and the US 

Department of Defense, or the process-focused Capability Maturity Model, CMM (later developed into 

Capability Maturity Model Integration, CMMI) (Anon, 2011), developed by the Software Engineering 

Institute (SEI) at Carnegie Mellon University. From these two, many adaptions have then been 

developed for specific areas, effectively to adapt to the specifics of these contexts, because straight 

adaptation is either impossible or non-intuitive for the developers. 
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For many of the maturity constructs, maturity denotes the compromise, or distance, between actual 

uncertainty and ideal/target uncertainty (Grebici et al., 2007), and is assessed by use of a level-scale, 

with definitions ranging from an initial level to an optimising level. NASA has developed a Standard on 

Modelling and Simulation (Anon, 2008), to provide decision makers with information about the 

credibility of M&S. They suggest a Credibility Assessment Scale with a scale with five levels (0-4) over 

eight factors that contribute to the credibility of M&S results. US agency Sandia National Laboratories 

have developed a few approaches to assess the quality of M&S efforts. The Predictive Capability 

Maturity Model (PCMM) (Oberkampf et al., 2007) is a structured method to assess the level of maturity 

of computational M&S efforts. In an investigation to apply TRLs for M&S applications, Sandia created 

a TRL for M&S (Clay et al., 2008), which found that the basic NASA TRLs are too static for application 

in M&S, and thus needed to be developed and take in specific modelling context. They suggest a 

framework and methodology that merges with the PCMM approach, which is expanded over relevant 

areas for physics-based M&S of geometrical components, to represent both the modelling process and 

the TRLs, thus integrating with standard TRL measures. 

Apart from having one, or a set of scalars, an effect from assessing maturity of M&S efforts that has 

been identified is that the assessment in itself engenders discussion and communication (Oberkampf et 

al., 2007) about these issues, which would not happen otherwise. 

4 MODEL MATURITY IN THE DECISION ARENA 

In the research project described in Chapter 2, all results are packaged – in addition to the research 

production of papers – as models, which then can be used in concert for SDD, with multi-disciplinary 

optimisation. To facilitate this and to drive their usefulness as decision support, an integrated decision 

environment, called the “Decision Arena”, is created. Diverse models are used together to arrive at a 

holistic understanding of the decision. In this view, the role of trust and uncertainty is important to deal 

with, because of the cross-disciplinary models and stakeholders, with different conventions for 

presenting information. 

4.1 The need for model-meta-knowledge 

In the workshop discussion, the challenge of promoting increased use of models (especially models from 

research) in decision making in firms were addressed. All decisions must be motivated. For engineers, 

this means either developing models, and relying on their results, or performing physical testing and 

measurements. A major challenge in decision making in the firms is if they feel confident to make a 

certain decision. Information is needed, but sometimes expectations for what the information should be, 

what question should be answered, and how, are undefined or poorly communicated beforehand, which 

means that the information produced might not motivate the decision. Then it might end up being no 

decision made, and they revert to try and find the ‘right’ information by other means than M&S (e.g., 

physical measurements). Participants expressed frustration with this, where they often would like to see 

that a decision is made – even if it is the “wrong” decision – because that keeps momentum. A wrong 

decision can be changed, but with no decision there is also no action. 

A challenge is to know in which contexts a simulation model is valid to base a decision upon. It is both 

down to the models, and also the context for which the model should provide an answer. It is important 

to understand the applicability of the model, and as much when not to use a certain model. When models 

are not trusted, firms do physical testing and measuring – just to be sure. One participant rhetorically 

wondered “if they were doing too much physical measuring” for this reason. They wished for a 

framework to describe the models’ fitness for purpose and assumed uncertainty, so that they know if a 

model is valid for a certain decision. They want to understand which parameters would describe the 

model from a meta-perspective so that they can assess and question the model’s usefulness and effect 

on the decision in a constructive manner. 

4.2 Visualization of maturity and impact for models 

This part of the paper presents ideas for how to support the representation of models’ uncertainty 

contributions and usefulness in projects. The idea is to support communication by proposing a 

visualisation approach that presents meta-information about the models (Figure 1). The suggested 

visualisation displays two main dimensions relating to confidence in models; model maturity level 

(MML) and impact from using the model, on a colour-gradient background. The reason for using MML 
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and impact is to be able to represent uncertainty and imprecision as well as an expected consequence 

the decision has on the performance of the project. 

MML depicts a distance, or compromise, between the actual (i.e., current value) and ideal certainty level 

to be expected from the model. Similarly, as with other maturity constructs in literature, MML is 

envisioned to follow a levels-scale, from low to high maturity. 

Impact is here defined as the effect the model has on the framing of a question of the development 

activity. In a trade-off decision situation, some aspects (e.g. models or other design activities) have 

greater influence on the end result than other aspects. This is especially evident in a multi-model 

situation and with many parallel models, where decision makers should be informed about how to best 

spend resources, on high impact-level aspects, to improve the situation. 

With the colour-gradient background (red, yellow, green), acceptance thresholds – the combined 

uncertainty and impact where you trust to move forwards – can vary from one project to another, and 

also through different project phases. In early phases and in low-risk projects, more uncertainty can 

conceptually be allowed, whereas closer to product release and in important decisions with higher stakes, 

the threshold to pass will be higher. This can be visually represented with different gradients, as is 

exemplified in Figure 1. 

a:  b:  

Figure 1. Two examples (a and b) of visualisation of model maturity 

To reduce risk of information overload and a cluttered interface, the visualisation is suggested to be 

interactive, where users explore the reasons for the levels. Also, the idea is to support the user with 

suggestions on actions to take to move up from the current level. These are presented as the grey callout 

boxes in Figure 1. For instance, a preliminary model for an early phase might need to be superseded by 

a more detailed model if a more certain result quality is required in later phases. 

Aggregation of models can be represented visually, where the source models’ maturity contribution can 

be traced. In Figure 1 (a), sub-models are connected to the aggregate level by visual leads. Borrowing 

from the PCMM approach (Oberkampf et al., 2007) reviewed earlier, it is suggested to present an 

aggregate value as three parts (see Figure 1 (b)); the minimum MML of all ingoing models, the average 

levels of all of the, and finally also the maximum level, instead of just one value. 

Finally, the gradient background can be animated (i.e., difference between Figure 1 (a) and (b)) to depict 

how the project’s criteria is expected to develop during the project, thus allowing the users to decide if 

another model would be needed further on in the project. 

4.3 Test scenario 

The presented visualization concept for model maturity has been applied to a case of a 1.7-ton asphalt 

compaction roller (Figure 2 (a)). The case focuses on the design of the front of the machine considering 

seven subsystems or components: drum, frame, forks, bearings, engine, engine hood, and eccentric. 

Taking a lifecycle-value perspective on design with perceived customer value in focus, a multi-

disciplinary system model of the roller is developed. The model integrates engineering analysis with 

value-driven design in a hybrid simulation environment including several different software. 

The functional model, a structured representation of the functions needed for successful operation, is 

developed in order to evaluate system performances, such as compaction capacity, of the design concept. 

Here the main functionality is soil compaction. However, to be able to compact soil, additional 

functionality such as, power supply and transmission is needed. A simplified schematic description of 

the functional model developed in the case study is given in Figure 2 (b). 
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a:      b:  

Figure 2. (a) Asphalt compaction roller and (b) functional model of asphalt compaction 

This functional model is populated by engineering models (for example in the form of differential 

equations, algebraic equations and mathematical logic) in order to estimate the performances of the 

system (listed on the right side of Figure 2 (b)). In the case study, for a given system configuration, a 

compaction model calculates the amount of energy per time unit that is transferred to the ground through 

the drum. An energy model calculates required energy and associated fuel consumption for the 

suggested machine design, and a finite element model of the frame verifies the structural strength to 

avoid structural failure during operation. For the population of such engineering models, geometric and 

technical descriptions of the major sub-systems and components under analysis is required. This 

information is supplied through a parametric CAD-model. Geometric information from the CAD model 

is also used to assess visibility from the operator's seat. 

A value function, total cost of ownership (TCO), is defined to cover the relevant monetary impacts 

throughout the system lifecycle and builds on three major cost drivers (TCO items); unit cost, operation 

cost, and maintenance cost. The unit cost is estimated as the sum of all purchase costs and the 

manufacturing costs, which are estimated by use of a generic factory cost model. 

The results from the simulation of the functional/engineering and the factory models are used as input 

to the development and simulation of ‘lifecycle performance’ models. In the case study, these consist of 

two modules based on a discrete-event simulation (DES) technique. The first is an ‘operation model’, 

calculating measures such as, net utilization time, net distance covered, net total fuel consumption, and 

number of transport operations between work sites. The second module is a maintenance model, 

predicting the impact of design choices on maintenance and repair costs. 

A simplified schematic description of the multidisciplinary model hierarchy, showing typical model 

interaction is shown in Figure 3. The model hierarchy has three levels with the TCO model on top (level 

1) and the system performance models in the bottom (level 3). 

 

Figure 3. Hierarchical decomposition of value model and sub-models on three levels 

The complete system model is hierarchical with interlinked models (Figure 3). For example, to calculate 

operation cost, the operation cost model must be executed. However, this model is fed by several other 

models, such as, the velocity, visibility, and compaction capacity models. In such an interlinked multi-
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level model hierarchy, uncertainties propagate through the system. To be able judge the high-level 

output (operation cost), the decision maker must be aware of eventual uncertainties at lower levels and 

how they propagate through the system. In this context, the decision maker needs to trade-off uncertainty 

in the models against their overall impact on value to be able to make a confident decision on a design 

concept. 

To exemplify sub-model impact on model response, an assessment based on a sensitivity study is made. 

The input variables from the sub-models that compose the operational model (velocity, visibility, and 

compaction-capacity) are varied a small amount around a nominal value and the model response 

(operation cost) is calculated. The result is plotted as a tornado diagram (Figure 4) showing to what 

extent sub-model variation affect model response. 

 

Figure 4. Results from sensitivity analysis 

Quantifying sub-model impact on model response through a scale is not a trivial task. One example 

could be, assuming results of the sensitivity study is normally distributed, a scale based on percentiles, 

(e.g., similar to relative grading applied in some school systems). Expected small sample sizes in the 

intended application will render low confidence levels in these predictions although this might be 

acceptable due to the relative nature of the sought impact measure. In the example, impact is graded on 

a scale from 1 to 5 evenly distributed across 0-100%. The results are summarised in Table 1 and 

visualized according to the proposed format in Figure 5. 

Table 1. Results from test case 

Model Impact MML Comment 

Compaction 5 3 Modification of validated 

model previously used  
 

Velocity 3 4 Experimentally verified. Used 

within the firm for many years. 
 

Visibility 1 1 Only account for operator sight 

in one direction. Do not follow 

international standard 

ISO5006:2006. 
 

 

The visualisation for the test case can be seen below in Figure 5. The MML and impact relative to a 

threshold combination is visualised with use of colours. For instance, impact for compaction is red, 

whereas both MML for the velocity model and impact for the visibility model is green. Clicking on the 

visibility model provides additional rationale and suggestions for how to improve the result. 
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Figure 5. Visualization of MML and impact for test scenario 

The example illustrates that a low MML not necessarily requires an action. The visibility model has 

MML 1, but because its impact on the response is low it can still be acceptable. On the other hand, the 

compaction model has MML 3, but because it has significant impact on the response, the decision maker 

is cautioned and able to account for this in a decision scenario. 

5 DISCUSSION–INTEGRATED DECISION SUPPORT OF UNCERTAINTY 

MANAGEMENT 

The design process paradox (Ullman, 2010) effectively states that having more knowledge available, 

sooner in a project allows more informed decisions about the design project before it is too late. The 

findings from the study indicates that having ‘knowledge about the knowledge’ would also allow for 

more informed decisions, not necessarily because the product is better, but because there is more 

knowledge about its potential imperfections. 

A challenge in a multi model environment, is to have a consistent and representative way to deal with 

aggregation and propagation of model immaturity. Outputs from one model leads to inputs in another 

model in the hierarchy, and uncertainties will propagate through this complex system. In such a context, 

engineers have the difficulty of understanding how uncertainties of models propagate. As a result, 

engineers will direct personnel and time to improve the maturity of all the models, hence delaying the 

decision moment. In this discussion, the ‘cost of modelling’ is of interest. In product development, 

resources are scarce and it is important to know how to spend those in the best way possible. In M&S 

and applying the MML/impact measures, it is of interest to know on which model(s) to best spend 

resources to improve the outcome, and thus not evenly distribute efforts onto models that can already 

be executed with sufficient confidence to deliver a product. With the presented visualization support, 

engineers can direct resources to the improvement of the maturity only of those models that have greater 

impact on the overall results. Others can be considered as ‘satisficing’ (Simon, 1979) even with a low 

maturity level. 

Although a sensitivity analysis provides a feel for the robustness of the models, when aggregating 

several layers of models and one serving as input to the next, ‘faulty’ models can skew the results from 

a variation on inputs in a similar fashion, providing a false positive on a robustness response. The idea 

is that the combination of MML and impact will capture this, but it needs to be further elaborated. 

M&S is part of a greater whole in product development, where it is contributing to the uncertainty of 

product development at large (Johansson, 2014) in projects, which contains other knowledge elements. 

Part of the ongoing work is therefore also to relate and expand on the knowledge maturity scales which 

were elaborated (Johansson et al., 2011) to support decision making in a gated process, based on the 

evaluation of input information, tools, and user experience and expertise. On this note, M&S capability 

is not just about the simulation tool, but also requires the right infrastructure and user expertise and 

qualification (Clay et al., 2008) to be effective. For instance, what reality to model is defined by the 

user’s state of knowledge (Walter et al. 2014), where an engineer is likely to perceive reality differently 
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from a business developer, and allowing both (Ericson et al., 2007) to perceive the relevant information 

accordingly is important. 

A strong belief with the application of a maturity construct is that it, as identified by other authors 

(Graettinger et al., 2002; Oberkampf et al., 2007), also allows the stakeholders to stimulate discussion 

and communication about issues that are on a meta-level. It essentially is a boundary object (Johansson, 

2009; Panarotto, 2015). This relates to more fundamental issues of knowing, and is not directly related 

to satisfying the specific application expectations. Maturity is about figuring out and valuing some 

relevant sets of meta-information, with a view towards making informed decisions; What activities (how 

well) have been performed? What are the processes? Whom are involved? How can information be 

characterised? 

6 CONCLUDING REMARKS AND FUTURE WORK 

The aim of this paper has been to conceptualize a design support for improving confidence and validity 

in models, by communicating uncertainties from modelling and simulation to relevant stakeholders. This 

has stemmed from the need of firms that want to move towards using models as a first and only mode 

of attack, as this would allow to avoid testing physical models (thus accelerating the development 

process). Also, firms want to be able to incorporate new modelling approaches stemming from research 

(such as for value and sustainability) sooner in their product development processes. 

This paper has developed and suggested an approach to visualization of model maturity level (MML) 

as well as impact level in relation to one or several aggregated models. This was exemplified by a test 

scenario where a multi-disciplinary modelling and simulation of an asphalt roller, was presented. 

The main findings indicate that a way of representing some relevant meta-information of the use of 

models is needed in order to better comprehend the results of the model hierarchy. With such 

representation, engineers can direct their action on improving the maturity of models that highly affect 

the end result, while under prioritizing the maturity of models with low impact on the end results. 

We can also conclude that there are more research efforts needed to be able to move closer towards 

industrial adoption of this approach. More empirical work with the partner firms is needed to further 

understand their problems and hesitations from going all-out on the M&S track. Here we see that there 

is a need to do some ‘model archaeology’, where we can review past cases – both successes and misses 

– to see what were the actions taken, with what rationale (also in retrospect), and the outcomes from 

these projects. Also, a method for assigning impact levels needs to be further researched. Based on this, 

together with best practice from literature, a framework of MML can then be further elaborated and even 

expanded beyond M&S into an improved Knowledge Maturity framework for managing the meta-level 

of ‘knowledge about knowledge’ discussion in the projects. 
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