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1. Introduction 
Uncertainty represents one of the key challenges in product development (PD) projects and can 
significantly impact a PD project's performance. Risks in PD lead to schedule and cost over-runs and 
poor product quality [Olechowski et al. 2012]. Risk management is one response for the identification 
and management of risks. Acknowledging the increasing societal and business criticality of product 
development projects, there is a need to more thoroughly explore the various fundamental approaches 
to describe and quantify various types of uncertainty as part of the overall decision making process.   
Decisions made by PD managers and engineers have a significant impact on the strategic value of the 
asset delivered, and these decisions depend on the quality of information on which they are based [Eweje 
et al. 2012]. Uncertainty plays an important role in decision making. Decision making quality improves 
if uncertainty is carefully addressed (e.g. [Prelec and Loewenstein 1991], [Riabacke 2006]). 
In the risk management community there is a strong argument that at least two distinct types of 
uncertainty have to be taken into account: aleatory and epistemic. Epistemic uncertainty arises due to 
lack of knowledge and can be reduced by collecting and acquiring new knowledge. This is in contrast 
to aleatory uncertainty that is of stochastic nature, and therefore cannot be reduced, but can be well-
modelled and described by probability distributions. In addition to uncertainty, ambiguity needs to be 
considered that addresses the different ways in which factual statements may be interpreted by different 
individuals [Klinke and Renn 2002].  
[Flyvbjerg 2007] observed that the main challenges of large projects, including PD projects, are 
inadequate, unreliable or misleading information; and conflicts between decision making, policy and 
planning. It has been proven by empirical studies (e.g. [Levi 1990], [Sahlin 2012]) that the amount and 
quality of information behind probabilities and utilities is an important factor when making decisions, 
in other words, people tend to make different decisions if they are aware of the amount and quality of 
the data on which probability and utility assessments are based. Arguably, the key challenge in PD risk 
management today is that uncertainty quantification relies solely (or at least heavily) on probabilistic 
models. While these are appropriate to describe aleatory uncertainty, they are fundamentally ill-suited 
to model epistemic uncertainty. In this paper, we will explore novel post-probabilistic uncertainty 
quantification models that promise to better address epistemic uncertainty, and their possible application 
in the context of PD risk management.  

2. Context of the study 
Product development projects represent a very complex set of actions. Complexity in the sense of PD 
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risks refers to the difficulty of identifying and quantifying causal links between a multitude of potential 
candidates and specific adverse efforts [Renn et al. 2011]. PD projects are also characterized by high 
costs, large number of stakeholders, long design and operational lifecycles (sometimes on the order of 
decades) and significant societal impact. Therefore, the way we manage product development projects 
is very important. Particularly, risk management can impact a project's performance significantly. Even 
simple relationships may be associated with high uncertainty if either the knowledge base is missing or 
the effect is stochastic by its own nature [Klinke and Renn 2002], and uncertainty typically increases 
with complexity of a project. For this reason, transparency in decision making process is crucial. 
Probability based risk methods have been broadly used for quantifying and assessing risks. Those 
methods have shown to be reliable tools when we have an uncertain, but broadly familiar situation. In 
cases where there is existing knowledge, information or experience regarding possible threats for a PD 
project, we are dealing with situations dominated by aleatory uncertainty. We can identify possible 
outcomes and run simulations on representative data sets. Classical example would be Monte Carlo 
simulation [Kujawski and Angelis 2009], for example to predict project cost based on using scaling 
parameters (such as weight, range or functionality) for comparable projects. Such quantitative 
techniques require numerical data while available information related to uncertainty factors is not, in 
many cases, numerical. Rather, this information can be introduced through natural language statements. 
Even though probability based tools have a long tradition, their limitation is that fundamentally, projects 
are often unique [Flanagan and Norman 1993].  
In their study, [Aven et al. 2014] showed that probabilities can always be assigned under the subjective 
probability approach, but the origin and amount of information supporting the numbers are not reflected 
by the numbers produced. Their example clarifies that one may subjectively assess that two different 
events have probabilities equal to, say, 0.7, but in one case the assignment is supported by a substantial 
amount of relevant data, whereas in the other by effectively no data at all. This is the main argument in 
the critique of the probability based approach to dealing with epistemic uncertainty. 

Table 1. Characteristics of tame and wicked problems [Atie and Andra 2008] 

Characteristic Tame problems Wicked Problems 

Relationship of 
problem and solution 

The clear definition of the problem also 
unveils the solution 

No agreement exists about what the 
problem is. Each attempt to create a 

solution changes the problem 

Ability to evaluate 
quality of solution 

The outcome is true or false, successful 
or unsuccessful 

The solution is not true or false – the 
end is assessed as "better" or "worse" or 

"good enough" 

Stability of the 
problem 

The problem does not change over time The problem changes over time 

Scope of the task 
The task is completed when the problem 

is solved 

The end is accompanied by 
stakeholders, political forces, and 
resource availability. There is no 

definite solution 

Stakeholder alignment 
and clarity of values 

There are shared values as to the 
desirability of the outcomes 

There are not shared values with respect 
to societal goals 

 
Many of the issues that occur during the design processes are due to a lack of knowledge. A major 
weakness of risk management is that the methods used so far do not capture epistemic uncertainty. For 
the remainder of the paper, we will use the framework of Wicked and Tame Problems [Atie and Andra 
2008] (see Table 1). We argue that Tame problems are dominated by aleatory uncertainty, and therefore 
existing uncertainty quantification methods are appropriate. Conversely, we argue that Wicked 
Problems are dominated by epistemic uncertainty, are not adequately addressed by existing risk 
management methods and therefore require novel, post-probabilistic uncertainty quantification methods.  
Based on the challenges outlined above, a growing number of expert risk analysts and researchers find 
the dominating probability-base approaches for assessing risks and uncertainties to be too narrow (see, 
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e.g. [Aven and Zio 2011]. Therefore, alternative, post-probabilistic approaches for representing and 
describing risk and uncertainties have been suggested: 

 Imprecise probability (IP) [Walley 1991] 
 The Dempster-Shafer theory of evidence, proposed by [Dempster 1967] and closely linked 

theory of random sets [Nguyen 2006] 
 Possibility theory [Dubois 2006], which is formally a special case of IPs and random sets 

theories 
 Semi-quantitative approaches, for example NUSAP Scheme [Funtowicz and Ravetz 1990] 

The main question we will discuss in the remainder of this paper is: How can we use post-probabilistic 
uncertainty assessment techniques to better support decision making processes in PD projects with data 
we have? Furthermore, what we are developing are hypotheses how post-probabilistic methods could 
better address epistemic uncertainties in PDs. Since PD projects are characterized by both Tame and 
Wicked problems, we argue that risk management must deal with lack of knowledge more 
systematically and strategically.  
To correlate all the parts that have been introduced above, in Table 2 we merged our hypothesis with 
the examples from product development. 

Table 2. Examples of PD problems and challenges to manage problems depending on the 
method type 

 Tame problems Wicked problems 

Examples form PD  Solving apparent technical 
issues 

 Incremental improvement of  
existing product 

 Daily disturbances  
 Lack of experts from the field 

 Supplier problems 
 Regulation and/or law changes  
 Stakeholders disagreements 
 Unclear or fluid requirements 
 Design of large-scale socio-technical 

system (e.g. energy generation and 
distribution) 

Dominant uncertainty  Aleatory uncertainty Epistemic uncertainty 

Dominant uncertainty 
quantification method 

Probability-based method Post-probabilistic method 

Challenges of risk 
method 

Probability based methods:  
 Compliance to existing 

standards 
 Balancing risk management 

effort with expected return 
 Integration of risk management 

results into decision making 
processes 

 Selection of appropriate 
quantification method, and 
associated skills in organization 

Applying (ill-fitting) probability-based 
method 
 Escalating computational complexity in 

large projects 
 Quality and reliability of "translation" of 

natural language statements and epistemic 
uncertainty into numerical values 
Large effort for questionable decision 
support 

Project managers’ view and biases 
Applying post-probabilistic methods: 
 Novelty issue: Implementation and skill 

development 
 Need to operationalize theory to industrial 

practice  
 Interpretation of results and integration 

into decision making process 

3. Introduction to selected post-probabilistic theories 

3.1 Imprecise probability 

During the last three decades, a number of mathematical structures have been developed that relax the 
strong axioms of probability theory (Kolmogorov’s axioms) and, by that, allow capturing epistemic in 

DESIGN METHODS 535



 

addition to aleatory uncertainty. This group of theories is referred to as the "theories of imprecise 
probabilities". Imprecise probability (IP) is a generic term for a range of mathematical models that 
measure chance or uncertainty without sharp numerical probabilities (e.g. "can be", "for example", 
interval-valued). These models include belief functions, Choquet capacities, comparative probability 
orderings, convex sets of probability measures, fuzzy measures, interval-valued probabilities, possibility 
measures, plausibility measures, and upper and lower expectations or previsions [Walley 1991]. IP 
admits that probabilities cannot be known precisely if the modeller has only partial information at hand. 
They suggest constructing probabilistic measures of interest as precise (or imprecise) as available data 
allows. 
The major novelty in the concept is to drop a central assumption of Bayesian theory, which states that 
uncertainty should always be measured by a single (additive) probability measure. Unlike the Bayesian 
"dogma of precision", in order to characterize the uncertainty of an event with imprecise probabilities, 
we need both lower and upper probabilities. 
There are a large number of arguments which support the concept of imprecise probabilities. The 
following list is taken from [Kozin and Petersen 1996] and illustrates from the practical point of view 
why imprecision in probabilities is needed:  

 to reflect the amount of information on which they are based; 
 to model a state of complete ignorance, meaning a total absence of relevant information; 
 to combine several sources of information; 
 to combine different probabilistic judgments generating an imprecise model; 
 to treat disagreement amongst groups members over probabilities obtained by judgments in the 

same way as conflict between several assessments of one individual: both are sources of 
imprecision; 

 to capture uncertainties of some problem situation more faithfully, not only due to randomness. 

Football example [Walley 1996]  

Consider a football game whose possible outcomes are win (W), draw (D) or loss (L) for the home team. 
To express its uncertainty about the outcome, the user makes the judgements: 

1. Probably not W, 
2. W is more probable than D, 
3. D is more probable than L. 

What can we say about the probabilities of the three outcomes?  
The theory of coherent imprecise probabilities allows computing interval-valued probabilities based on 
the above partial and imprecise statistical information that is closer to the natural language, though tied 
to probability. The answer to the question is: P(W) = [1/3; 1/2], P(D) = [1/4; 1/2], P(L) = [0; 1/3].  
If more non-conflicting judgements are provided, the bounds for the probabilities become tighter. Many 
other kinds of qualitative or quantitative judgements could be added to the three we have considered, 
for example, 

4. if not D then W is very likely, 
5. W is between 1 and 2 times as probable as D, 
6. I am willing to bet on L at odds of 4 to 1, 
7. W has precise probability 0.4. 

The theory of coherent imprecise probabilities can also accommodate different reliabilities of different 
sources of information, if there are grounds to assume that one source of information is more reliable 
than another. 

3.2 The Dempster-Shafer Theory of Evidence 

Other theories of IPs allow deriving interval-valued probabilities given a different type of input. One of 
those theories is the theory of belief functions, the Dempster-Shafer Theory of Evidence (DS). 
The DS theory originates from the work of [Dempster 1967] in the context of statistical inference. Later 
on, it has been formalized by Shafer as theory of evidence. In their study, [Beynon and Curry 2000] 
pointed out that DS, as a technique for modelling reasoning under uncertainty, seems to have numerous 
advantages over the more traditional methods of statistics. The authors emphasize that the theory has 
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been popularized in the literature of Artificial Intelligence and Expert Systems, but it has also been 
applied to certain extent in the fields of face recognition, statistical classification, target identification 
and medical diagnosis. 
The main feature of DS is the possibility to include additional judgments in evidential reasoning. This 
permits the theory to measure and take into account the weight of evidence. Another key feature  
highlighted by [Beynon and Curry 2000] is that, unlike in possibility theory and statistical reasoning, 
there is no need to force our probability or belief measures to sum to unity. Hence, possibility theory 
can be considered a special case of DS. 
The Dempster-Shafer Theory of Evidence is based on complex mathematical explanations, a discussion 
of which goes beyond the scope of this paper. One study by [Walley 1996], where the Dempster-Shafer 
Theory of Evidence has been mathematically exhaustively explained, is followed with a set of 6 
examples, each mathematically grounded. The authors of this paper tried to find an example where an 
extent knowledge of mathematics in not necessary to follow the argumentation, but having failed to do 
so focus on one example of a key feature that is mentioned above.  

Example: reliability analysis (quoted from [Aven 2014]) 

"To illustrate, suppose that a diagnostic model is available to indicate with reliability (i.e. the probability 
of providing the correct result) of 0.9 when a given system has failed. Considering a case in which the 
model does indeed indicate that the system has failed, this fact justifies a 0.9 degree of belief in such an 
event but only a 0 degree of belief (not 0.1) in the event that the system has not failed. This latter belief 
does not mean that it is certain that the system has failed, as a zero probability would; it merely means 
that the model indication provides no evidence to support the fact that the system has not failed. The 
pair of values {0.9; 0} constitutes a belief function on the propositions "the system has failed" and "the 
system has not failed"", 

3.3 NUSAP (Number, Units, Spread, Assessment and Pedigree) measure 

In contrast to previously presented theories, where today expert knowledge is required to interpret the 
results, a different technique was developed during the 1980s. The idea is to draw attention to the 
properties of numbers (which are often ignored) and to offer transparency when it comes to the quality 
of information. NUSAP scheme targets a broader audience and origin of the data plays a bigger role. 
[Funtowicz and Ravetz 1990], alarmed by the misuse of numbers in debates about nuclear safety levels 
and later the misuse of scientific findings by climate change "sceptics" to delay climate action, 
constructed the NUSAP notation. With the focus on policy-related research, they proposed that 
nowadays tasks should not only include the management of uncertainties, but also the assessment of 
quality and communication with the public.  
We argue that high quality decision making does not necessarily require the elimination of uncertainty, 
but rather its effective management, as the NUSAP Scheme offers. The NUSAP measure can capture 
more background features than IPs, though, at the "cost" being a qualitative measure. Project risk 
management approaches must be based on coping with a lack of knowledge at least as much as on the 
application of knowledge [Funtowicz and Ravetz 1990].  The NUSAP measure has a large information 
content, but being a qualitative expression, there is no strict formal way to base decision making on it. 
Funtowicz and Ravetz [1990] coined the term NUSAP as an acronym for the 5 categories of information 
included in their measure: Number, Units, Spread, Assessment, and Pedigree. The essential idea is that 
a result of any analysis, including risk and uncertainty quantification, should not be a single number, but 
it should be accompanied by additional information to allow decision makers to interpret its overall 
meaning value (here introduced through the four additional categories). The "unit" measure states 
whether we are talking about percentage or money or something else. "Spread" and "Assessment" is 
related to uncertainty. Spread is used to express the random error, and the systematic error is expressed 
by Assessment. The most significant novelty comes from the "Pedigree" measure, that informs on the 
information feed, or in other words, the origin and quality of data analysed. By providing detailed 
information to the decision maker on how data was collected, what the sample size and similar measures 
are, the NUSAP measure lets them judge the overall value and meaning of the presented data. It 
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eliminates uncertainty or misinterpretation whether for example a probability measure is just a guess or 
based on extensive simulation and testing.  
There exist guidelines for the NUSAP application [Brocéliande team 2015] and the following list is 
quoted according to the same source.  
Typical strengths of NUSAP are: 

 NUSAP identifies the different types of uncertainty in quantitative information and enables 
them to be displayed in a standardized and self-explanatory way. Providers and users of 
quantitative information then have a clear and transparent assessment of its uncertainties. 

 NUSAP fosters an enhanced appreciation of the issue of quality in information. It thereby 
enables a more effective criticism of quantitative information by providers, clients, and also 
users of all sorts, expert and laypersons. 

 NUSAP provides a useful mean to focus research efforts on the potentially most problematic 
parameters by identifying those parameters, which are critical for the quality of the information. 

 The diagnostic diagram, a NUSAP method, provides a convenient way in which to view each 
of the key parameters in terms of two crucial attributes. One is their relative contribution to the 
sensitivity of the output, and the other is their strength. When viewed in combination on the 
diagram, they provide indications of which parameters are the most critical for the quality of 
the result.  

Example – Pedigree matrix: 
The NUSAP example will focus on the explanation of Pedigree category, the major novel feature of the 
NUSAP method. 
As illustrated in the table below, taken from [van der Sluijs et al. 2005], Pedigree can be used for coding 
qualitative experts’ judgements. 

Table 3. Pedigree matrix for parameter strength 

Code Proxy Empirical Theoretical basis Method Validation 

4 
Exact 

measure 

Large sample 
direct 

measurements 

Well 
established 

theory 

Best available 
Practice 

Compared with independent 
measurements of same 

variable 

3 
Good fit or 

measure 

Small 
sample 
direct 

measurements 

Accepted 
theory 

partial in 
nature 

Reliable 
method 

commonly 
accepted 

Compared with independent 
measurements of closely 

related variable 

2 
Well 

correlated 
Modelled/ 

derived data 

Partial theory 
limited consensus 

on reliability 

Acceptable 
method 
limited 

consensus 
on reliability 

Compared with 
measurements not 

independent 

1 
Weak 

Correlation 

Educated 
guesses / 
rule of 
thumb 

estimate 

Preliminary 
theory 

Preliminary 
methods 
unknown 
reliability 

Weak / 
indirect 

validation 

0 
Not clearly 

related 
Crude 

speculation 
Crude 

speculation 
No discernible 

rigour 
No 

validation 

 
For the data types presented in the source, the validation scores are poor. Pedigree, in this case, conveys 
an evaluative account of the production process of information. Also, it indicates different aspects of the 
underpinning of the numbers and scientific status of the knowledge used [van der Sluijs et al. 2005]. 
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4. Discussion of post-probabilistic methods in PD  

4.1 Current state of the art in practice 

The various ISO standards and different professional and regulatory guidelines represent a significant 
progress in risk management practice. However, it is still open to debate how applicable, appropriate 
and effective those guidelines are [Oehmen et al. 2014]. In order to apply a certain method, we need to 
simplify a real situation to a "practical" model. More assumptions need to be made in order to have 
calculable data. This is especially the case when using probabilistic methods. However, it is not 
justifiable to make significant assumptions when the overall level of ignorance is high. We propose 
using post-probabilistic methods to be transparent when there is a lack of knowledge and address those 
issues in a more structured manner, both qualitatively and quantitatively, instead of simply ignoring the 
degree and quality of available knowledge. Also, current practices need to make a step forward from 
relying on "manager’s experience" or "expert opinion" as discussed later on, which can be seen as a 
simple "way out" to dealing with epistemic uncertainty. 

4.2 Literature review 

Post-probabilistic methods have found application in several areas, though practically all of them outside 
the PD and project management domain. For example, a well-recognized application of IP is the domain 
of Artificial Intelligence. In his study, [Walley 1996] compares four measures that have been advocated 
as models for uncertainty in expert systems. The measures are additive probabilities (used in the 
Bayesian theory), coherent lower (or upper) previsions, belief functions (used in the Dempster-Shafer 
theory) and possibility measures (fuzzy logic). A significant progress was made in signal processing by 
implementing imprecise methods thinking for reliability analysis [Kozin and Petersen 1996]. 
In their study, [van der Sluijs et al. 2005] showed experiences in applying NUSAP system in the 
Netherlands.  
To understand the state of research and application relating to PD projects, we used the SCOPUS 
literature database. Table 4 gives an overview of key words and results. The filter was set to search 
within titles, abstracts and keywords of documents. In addition, key publications of authors dedicated to 
these methods were reviewed. Yet, no serious application cases were found. The collected papers 
represent suggestions and discussions on the implementation of a corresponding method into practice. 
No further development or adjustments of the methods were found. 

Table 4. SCOPUS search to investigate application of post-probabilistic methods in PD projects 

AND  Project management Product development 

Imprecise probabilit* 1 [Fletcher and Davis 2002] 0 

Dempster 1 [Elst and Kiesel 2004] 1 [Li et al. 2012]  

NUSAP 0  0 

4.3 Comparison among fields 

Professional experience and personal judgement are important for risk assessment. Product development 
projects are often unique. Tacit knowledge is therefore very important. As Polanyi, a research 
philosopher, said: "We can know more than we can tell", This is often how the way of working of 
experienced managers or experts is explained. There is not much transparency in such reasoning. This 
issue is being addressed in Artificial Intelligence, also with the help of post-probabilistic methods, and 
we suggest cross-sectoral learning to inform PD.  
Also, similarities exist between System Reliability Analysis, where post-probabilistic methods are used, 
and PD: In a reliability analysis, the objective is to capture probabilities of subsystem failures, where 
subsystems consist of many small components. Projects, on the other hand, can be similarly divided into 
smaller dependent sets, and analysed regarding the risk they represent for the overall project. 

4.4 A decision maker's perspective 

Acknowledging risk and uncertainty assessments as decision support tools requires that the meaning 

DESIGN METHODS 539



 

and practical interpretation of the quantities computed are presented and communicated in an 
understandable format to the decision makers [Aven et al. 2014]. 
There are three critical questions from a decision maker’s perspective: 

1. For a specific situation, which is characterized by a lack of knowledge, what options do I have?  
2. How reliable is the first answer I get, and can I use it confidently? 
3. How costly-effective is a particular analysis method? 

We argue that post-probabilistic methods allow us to better address these three questions. By including 
additional judgements, we are taking into account all available information and yet clearly articulate 
what parts are not known. With the goal to faithfully represent and express the knowledge available to 
best inform a decision maker and to support the decision making process, the use of post-probabilistic 
methods can contribute to current product development practices. 
Therefore, any new method that aims to complement traditionally used probabilistic methods for risk 
assessment, should adequately address the questions above. Both familiarisation and implementation of 
a method, for risk assessment analysists and decision makers, are acceptable and feasible if the benefits 
gained are reflected in terms of confidence and quality in making decisions.  

4.5 Overall criticism of post-probabilistic methods 

The key critique for alternative uncertainty representations and treatment in risk assessment is, as stated 
in [Flage et al. 2014], lack of operational meanings or interpretations. 
Also, through their discussion [Aven and Zio 2011] tackled some researchers’ concerns, an imprecise 
probability result is generally considered to provide a more "complicated", i.e. harder to process, 
representation of uncertainty. In their study they acknowledge arguments against IP, such as that simple 
representation should be favoured. The use of IPs goes against of the idea of simplicity, and for many, 
particularly "first-of-a-kind" applications, it will lead to initial confusion and difficulties. Others strongly 
defend the Bayesian approach and heavily criticise any other attempt to perform uncertainty analysis 
[Aven and Zio 2011]. 
Implementation of the DS theory was not readily accepted in risk community. After several iterations, 
it has been proven as a valid method, or at least as a mathematically sound one. However, when 
significant conflict in information is encountered, the use of the Dempster rule has come under serious 
criticism [Sentz and Ferson 2002]. Furthermore, as stated in the same report, other researchers have 
developed modified Dempster rules that attempt to represent the degree of conflict in the final result.  
Mathematical representation of epistemic uncertainty have proven challenging. Calculating Dempster-
Shafer intervals can be highly computationally expensive [Swiler et al. 2009]. Several studies, such as 
[Bauer 1997] elaborated on ways and methods to overcome this difficulty. Various approximation 
algorithms have been suggested that aim at reducing the number of important elements in the belief 
functions involved. 
The computational complexity of the method is another concern. Arguably, even current methods are 
computationally expensive and time consuming. On the other hand, some are at least less complex, for 
example NUSAP Scheme, than some existing methods. One of the directions in current research is 
exactly going towards transforming these methods into more computationally usable ones, including the 
development of a "computational toolbox" as it exists in various commercial and non-commercial forms 
for probabilistic risk assessment. Other weaknesses of NUSAP, according to [Brocéliande team 2015] 
are the novelty of the method and limited (but significant and growing) number of practitioners who are 
using the method. Also, the scoring of Pedigree is to a certain degree subjective. The choice of experts 
to do the scoring is also a potential source of bias [Brocéliande team 2015]. 

5. Discussion, conclusion and future research   
Risk assessment tools have been widely spread to support the decision making process. Those 
techniques should be capable of producing a necessary level of confidence in their results. To create this 
confidence, the key is to have a transparent, systematic and rational representation and analysis of 
uncertainty.   
The PD Risk Management practice has so far relied on probability based methods when treating 
uncertainty. The development of probability as a measurement of uncertainty is based on an axiom that 
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precise measurements of uncertainties can be made [Bernardo and Smith 2009]. However, both 
theoretical and practical challenges have emerged. This has sparked the development of alternative 
approaches in other fields. The post-probabilistic methods introduced in this paper rely on the idea that 
imprecision correspond better to the weak information available which is the case in many product 
development projects.  
This is the first paper, to our knowledge, where alternative approaches of risk assessment are introduced 
to the field of PD. Our objective is to inform future discussions on how and where these methods can 
be applied. Considering the criticism that we acknowledge in this paper, it is essential for the field in 
our view to consider these relatively new methods when looking for more appropriate solutions to 
analysing and quantifying uncertainty.  
We acknowledge that it would be easier to follow the argumentation of this paper if the examples were 
from the product development field. We decided against "making up" examples that do not exist (yet), 
in favour of using examples that have survived the harsh review in the risk management community. 
What is necessary is to develop these examples through pilot applications and case studies, where the 
presented theories are adapted and tested in a PD environment.  
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