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Abstract 
Changeable factory systems are a viable strategy for manufacturing companies to cope with dynamic 
and uncertain environments, characterized by frequent engineering changes, product and technology 
innovations, and continuous improvement initiatives often resulting in changes of factory systems. 
Flexibility and changeability are considered beneficial properties helping to be prepared for the 
various possibilities of an uncertain future. To support the analysis of these system properties, suitable 
modelling techniques are required covering both structural and element properties. Hence, the 
objective of this paper is to provide a graph-based domain specific modelling approach for factory 
systems. Metamodels for nodes and edges are suggested based on metamodel and ontology design 
theory and an extensive review of factory planning literature. The approach is demonstrated by 
modelling a simple compressor shaft workshop production. Finally, promising application 
perspectives of the graph-based modelling approach are outlined. 
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1  INTRODUCTION 

1.1. Changeable systems in a dynamic world 
Designing socio-technical systems has become an increasingly challenging task. Researchers in the 
domains of design as well as manufacturing have spent tremendous effort on understanding the drivers 
of system changes. Investigations in effective and efficient management of change processes and the 
design of easily changeable products or manufacturing systems are of further interest. With increasing 
effort, since the early 1970s manufacturing science and operations management have been 
approaching the concept of changeability particularly by looking through the lens of manufacturing 
flexibility (de Toni and Tonchia, 1998). Research has been conducted to define suitable frameworks to 
analyse different facets of flexibility and to find ways for their accurate measurement. Besides, a 
variety of empirical work has investigated correlations of manufacturing flexibility with organisational 
attributes, technology, and measures of firm performance (Vokurka and O'Leary-Kelly, 2000). For 
about fifteen years, more recent work in manufacturing science shifted its focus from static flexibility 
to dynamic flexibility which is often referred to as changeability or transformability, describing a 
generic potential of a manufacturing system to cope with unpredictable future challenges, e.g. 
fluctuating sales volume, new products, upcoming production technologies, and changing customer 
requirements. Different so-called "enablers" of changeability have been identified, such as modularity, 
scalability, mobility, compatibility, and universality of factory systems and their elements (Wiendahl 
and Hernández, 2006; Koren et al., 1999). When comparing the reasoning for the importance of 
changeability in engineering and manufacturing systems as well as the principles for hedging against 
future uncertainties, similar challenges and concepts can be identified. Representing the perspectives 
of product development, Fricke and Schulz (2005) name dynamic marketplaces, technological 
evolution, and variety of environments as major drivers for systems development. To define 
changeability of system architectures, they suggest the four aspects robustness, flexibility, agility, and 
adaptability which are again supported by basic (e.g. ideality, modularity) and extending principles 
(e.g. integrability, scalability, and decentralisation) (Fricke et al., 2000; Fricke and Schulz, 2005). In 
manufacturing literature the corresponding situation is commonly referred to as a turbulent 
manufacturing environment, characterised by both increasing complexity and dynamics originating 
from inside (e.g. markets, politics, capital market) and outside (e.g. technologies, products, human 
resources) a company (Wiendahl et al., 2007). Finally, it must be noted that changeability always 
results from an interplay of more specific interrelated principles (cf. e.g. Fricke and Schulz, 2005; 
Ross et al., 2008). These strategic system properties often share a uniform suffix, therefore they are 
commonly referred to as "ilities" (Ross, 2008; de Weck et al., 2011). 

1.2. Factory system definition 
In manufacturing literature, the layer model of production systems has been established (see e.g. 
Wiendahl et al., 2007). Figure 1 shows the resource view of this layer model distinguishing network, 
factory, segment, line, station, and technology level. However, for the analysis of sub-sections of a 
manufacturing plant this separation of levels appears too granular. Another issue arises from the use of 
the system term as a layer of the model itself while this concept should be thought independent from 
the level of abstraction. Hence, the following definition for factory systems is proposed: Factory 
systems comprise the spatial arrangement, relations, and properties of technology, personnel, and 
infrastructure in a differentiable sub-section of a manufacturing plant. The system boundary can be 
drawn depending on technological or product-oriented deliberations. 

1.3. Model-based analysis of factory system "ilities" 
Partly driven by the increasing industrial relevance of product service systems, both engineering and 
manufacturing systems are more and more understood as complex socio-technical systems, calling for 
a trans-disciplinary exchange of theories, methods and results. Especially strategic properties of these 
systems, the system ilities, can be interpreted and analysed for a wide range of system types. Major 
contributions towards a definition and theory of ilities as well as an investigation of their relationships 
and utility for protection against uncertainty and changing environments have been made by McManus 
et al. (2007), Ross (2008), Ross et al. (2008), de Weck et al. (2012), and Chalupnik et al. (2013). With 
the existence of unambiguous definitions of ilities, they have become accessible for analysis and 
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evaluation. First attempts to make use of methods from structural complexity management (cf. 
Lindemann et al., 2009) to interpret selected ilities by means of structural criteria have been made by 
Maurer et al. (2014). Nevertheless, as ilities of systems arise from both elements and their interaction 
(Chalupnik et al., 2013), a complete interpretation can only be achieved including element attributes as 
well as structural metrics. However, suitable modelling techniques that capture relevant information of 
manufacturing systems and enable quantitative analysis of strategic system properties are still missing. 

 
Figure 1. Layer model of production systems and factory system definition 

1.4. Objectives and research methodology 
The objective of this research is to provide a modelling approach designed to enable analysis of ilities 
for socio-technical systems within manufacturing plants - so called factory systems. In order to do so, 
a domain specific graph modelling language is suggested based on metamodel and ontology design 
theory. The domain specific language is represented by metamodels for nodes and edges. Research 
activities have been guided by the following research questions:  
Which level of abstraction of factory systems is suitable for the aspired analysis of ilities? 
Which requirements have to be fulfilled by the modelling approach to enable the analysis of ilities? 
Which elements, relations, and attributes should be included in a metamodel and how should its class 
structure be designed? 
The Design Research Methodology (DRM) documented by Blessing and Chakrabarti (2009) provided 
guidelines for the work carried out. According to the DRM framework, the research design at hand can 
be classified as a 'Type 3' where 'Research Clarification' and 'Descriptive Study I' are conducted 
'review-based' while 'Prescriptive Study' and 'Descriptive Study II' are performed 'comprehensively'. In 
addition to a literature review, a comprehensive study requires "a study in which the results are 
produced by the researcher, i.e., the researcher undertakes an empirical study, develops support, or 
evaluates support" (Blessing and Chakrabarti, 2009). To support a subsequent evaluation of results, the 
success criterion of this work is defined as 'successful development of a design support for modelling 
factory systems suitable for the analysis of system ilities'. 
The remainder of this paper starts with a short review of different fields of application for modelling in 
manufacturing science before requirements for factory system modelling are formulated. Following, a 
short comparison of existing languages and methods for analysis-oriented modelling of factory 
systems is made to motivate the usage of the domain specific approach chosen in this paper. After a 
short theoretical introduction to metamodel and ontology design theory two metamodels are suggested 
and finally used for modelling an exemplary factory system producing a compressor shaft. The paper 
concludes with a discussion of potential applications and outlining opportunities for further research. 
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2  MODELLING FACTORY SYSTEMS 

2.1. Requirements of factory system modelling 
A variety of modelling approaches exist devoted to the modelling of manufacturing plants on different 
levels of detail in order to to provide support for planning, analysing, visualising, or optimising the 
respective object under consideration. Some of the most prominent use cases in operations 
management are optimisation of layout (e.g. spatial arrangement of machines), material flow (e.g. 
capacity restrictions), production planning and control (e.g. scheduling), business processes, and 
energy efficiency. However, models to evaluate strategic system properties are rarely to be found in 
manufacturing literature, albeit research effort has been spent on quantifying individual ilities (e.g. 
modularity). This work is an attempt to enable future research in this field by providing a suitable 
modelling approach for socio-technical factory systems. 
Requirements have to be specified in order to characterize the scope of modelling and to ensure that 
the resulting design support is constructed according to its intended purpose. Because "ilities are 
systemic properties that arise not only from the parts of a system, but also from the interactions 
between them" (Chalupnik et al., 2013), models need to enable structural analysis of the whole system 
as well as investigations of elements and properties. Since it is very likely that the metamodels will 
have to be expanded by later users, they should be designed adaptable. Furthermore, the modelling 
approach needs to enable an automated (i.e. machine-readable) quantitative analysis because of the 
complexity of real-world factory systems.  Finally, keeping the industrial application in mind, it is of 
utmost importance to provide an attractive and intuitively understandable visual representation of the 
models as well as to guarantee an acceptable effort for their generation. 

2.2. A short overview of methods and tools for system modelling  
A common software or system design process often requires hundreds of participants with different 
backgrounds, leading to a tremendous complexity regarding information flow, relationships and other 
interdependent variables (Steward, 1981; Wang et al., 2014). In the past, different methods and tools 
to support this process have been developed. In the following, SysML, Object-Process Methodology 
(OPM), Design Structure Matrix (DSM) and graph-based domain specific modelling (GDSM) will be 
outlined briefly as these "languages" have proven their benefit for model-based systems engineering 
(de Weck et al., 2011). 
SysML was developed on the basis of UML and is a standardized, graphical modelling language that 
is able to represent requirements, behaviour, structure and properties of systems and their components. 
With the mentioned abilities SysML supports the specification, design, analysis, verification as well as 
validation of complex systems (Valilai and Houshmand, 2009; Debbabi et al., 2010).  
Like SysML, OPM is also derived from UML but uses a reduced set of building blocks and only one 
unified type of diagram cutting the effort for generating, synchronizing and maintaining a plenitude of 
diagrams for system and function modelling (Dori, 2002; de Weck et al., 2011). 
Another technique to design, manage and analyse - particularly the structure - of complex engineering 
systems is the DSM. The DSM "is a square N x N matrix, mapping the interactions among the set of N 
system elements" highlighting a system's architecture (Eppinger and Browning, 2012). Due to the 
straightforwardness and flexibility of its concept it is applied in a variety of domains. Among others, 
DSM are also used in project management in order to improve planning, execution and management 
of complex projects by focusing on the optimization of information flows (Steward, 1981; Gunawan, 
2012). Furthermore, DSM are widely used in the field of software development (Wang et al., 2014). 
For a comprehensive presentation of DSM applications see Eppinger and Browning (2012). 
Network (referred to as graph in the following) and matrix approaches are dual formulations of a 
system's structure (de Weck et al., 2011). Graphs consist of nodes and edges which can be directed or 
undirected where nodes represent entities while edges are used to model any kind of interrelations. In 
general, nodes of a graph are treated equally, resulting in a highly abstracted representation of a 
system which is considered as a major drawback for the application in engineering. However, when it 
comes to visualization, statistical analysis, architectural properties (i.e. graph metrics), and big data 
graph-approaches demonstrate their benefits (cf. de Weck et al., 2011). 
GDSM try to capitalize on the advantages of graphs while reducing the level of abstraction because a 
class structure of nodes and edges is allowed. These classes are designed specific to a certain domain. 
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As a result, GDSM stand in contrast to a general-purpose languages like UML or SysML (France and 
Rumpe, 2005). 

2.3. Interim conclusion: Benefits of domain specific modelling approaches 
As stated above, the application of a GDSM has several advantages. Beside those mentioned 
previously, the GDSM is customized for a certain problem (Giachetti et al., 2009), thus its information 
content can be tailored according to the intended "resolution" and aspects of system analysis. Also, 
communication among users within a domain is simplified. Finally, it has a restricted semantic scope 
reducing learning efforts and leading to increased usability. On the other hand, drawbacks are the 
limitation to a specific domain and the non-existence of standards (France and Rumpe, 2005). As a 
consequence, the decision about using a GDSM must be based on weighting up learning effort, 
modelling effort, and requirements of system analysis. Taking the named advantages into account, the 
development of a GDSM is pursued here. 

3  METAMODEL DESIGN FOR FACTORY SYSTEMS 

3.1. Metamodelling 

3.1.1. Fundamentals 
According to Paige et al. (2014) "a model is a formal description of phenomena of interest, constructed 
for a specific purpose, and amenable to manipulation by automated tools." In other words, models are 
tools to describe the structure, behaviour and other properties abstracting from the real world, 
considering specific phenomena (Sprinkle et al., 2010). The same abstraction procedure can be applied 
in turn for the model itself. In that case, a so-called metamodel expresses certain properties of a model 
(Jeusfeld, 2009; Paige et al., 2014). Briefly, it could be said that "a meta-model is a model that consists 
of statements about a model" (Jeusfeld, 2009) or "a metamodel makes statements about what can be 
expressed in the valid models of a certain modelling language" (Seidewitz, 2003). Due to the fact that 
a wide range of definitions and standards (cf. Object Management Group or ISO/IEC 24744) 
concerning metamodels do exist (Atkinson and Kühne, 2003; Bézivin, 2004, 2005; Seidewitz, 2003), 
the understanding used within this paper shall be shared explicitly: "A metamodel is a description of 
the abstract syntax of a language, capturing its concepts and relationships, using modelling 
infrastructure" (Paige et al., 2014). The definition implies, that a metamodel just comprises the abstract 
and not the concrete syntax of a language, i.e. it lists the allowed constructs but it does not provide 
information about the right application (Jeusfeld, 2009). This circumstance allows for flexibility in the 
designing and deploying process (Paige et al., 2014). The main advantages of developing metamodels 
is that they document and support the language evolution over time, foster creation of well-formed 
models, support model-transformations, and formal checking of model properties (Paige et al., 2014).  

3.1.2 Ontology based metamodel development 
Gruber (1993) defines ontologies as a "specification of a representational vocabulary for a shared 
domain of discourse - definitions of classes, relations, functions, and other objects […]". Generally, 
metamodels can be understood as formalised ontologies (but not vice-versa). Given the variety of 
terms used for objects, relations, and attributes within the manufacturing domain, it is reasonable to 
make use of the more general guidelines for ontologies to prepare for metamodel development. This 
approach is used to capitalise on the advantages of thoroughly designed ontologies such as the explicit 
formulation of the structure of information and the underlying assumptions of a domain, enabling 
reuse of domain knowledge, and improving the quality of formal domain knowledge analysis (Noy 
and McGuinness, 2001). Using the ontology development guide of Noy and McGuinness (2001), steps 
1 to 5 of have been carried out iteratively: (1) Determining the domain and scope, (2) searching for 
opportunities to reuse existing ontologies, (3) enumerating important terms for specified domain, (4) 
defining classes and the taxonomic hierarchy, and (5) defining the properties of classes. In order to 
support step 1 and 2, existing frameworks, taxonomies, and descriptions for categorizing factory 
objects, relations, and attributes - with a focus on German factory planning literature - have been 
analysed in detail. 
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3.2. Metamodel of nodes 
The models depicted in Figure 2 and Figure 3Figure were designed according to the factory system 
definition formulated in section 1.2 and the requirements identified in section 2.1. 

 
Figure 2. Developed nodes metamodel 

The nodes metamodel in Figure 2 consists of four layers characterised by an increasing level of detail 
from top to bottom. Nevertheless, it is not mandatory for every branch to comprise all four layers. 
Each box in the model has an individual declaration such as 'Equipment' or 'Infrastructure'. Curly 
brackets including the term 'abstract', indicate that the node will not appear as concrete in the resulting 
model but is available only for the sake of inheritance. Besides, each class may contain attributes like 
it is the case for Equipment. Generally, attributes describe the properties of nodes, and edges are 
necessary to enrich the information content of the resulting model. Overall the developed metamodel 
consists of 71 classes and 20 attributes, in order to characterize factory objects and relations regarding 
performance, dimensions as well as physical and chemical properties. Due to the size of the model 
only an extract can be presented here. 

3.3. Metamodel of edges 

 
Figure 3. Developed edges metamodel 
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To represent the relationships between different factory objects, a metamodel of edges had to be 
designed as shown in Figure 3. In contrast to the metamodel of nodes, the edges metamodel has just 
three layers: 'Scope', 'Kind/Type' and '1. Specification'. It is assumed that the relationships between the 
objects can be described with five types of flows. Those again have an increasing level of detail from 
top to bottom. However, note that in contrast to the nodes metamodel all edges are classified as 
concrete. This way, the user is not obliged to specify the types of flows in more detail than the 'Scope' 
level. Classifying edges (or nodes) as abstract or concrete thus implicitly sets the level of detail within 
models. 

4 APPLICATION 

4.1. Academic example 
The underlying academic example is excerpted from Müller and Ackermann (2013). In the original 
factory planning case study, five components of a compressor are produced using fifteen types of 
manufacturing equipment. The factory layout of this workshop production is illustrated in the upper 
part of Figure 4. In order to keep the applied example as simple as possible, the case study was 
reduced to just one component, which is a compressor-shaft, and six corresponding machine tools. 
Each of those stations is operated by a machinist or auxiliary worker. Besides the machine tools a bay 
warehouse, buffers, and several storage areas are required.  

 
Figure 4. Exemplary graph model for a compressor shaft production 
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4.2. Design tool Soley Studio 2 
The application example was modelled in Soley Studio 2 which is based on the work of Helms on 
object-oriented graph grammars (Helms, 2013). The general purpose of this software tool is to merge 
distributed data from different sources in a graph-based representation to support overarching 
analyses. Beside other features, Soley Studio 2 can detect hidden dependencies or patterns and is 
capable to model and visualise complex coherences in a clear, understandable way providing useful 
insights in extensive graph-based data. In addition, with its integrated workflow automation, analysis 
knowledge of domain experts can be formalized and applied through automated workflows. Thereby, 
the knowledge inherent in these workflows can be used by anyone, e.g. to perform sophisticated 
analyses in decision-making situations. For more information about the software please refer 
to: www.soley-technology.com. 

4.3. Review of application experiences 
Although the modelled factory system was strongly simplified Figure 4 shows a considerable level of 
complexity due to the amount of relationships among manufacturing resources. To exemplify a simple 
and intuitive visual analysis, all machine tools have been scaled linearly depending on their mass. The 
process of modelling revealed that the metamodel's level of detail is designed appropriate to capture 
important structural properties of the factory system according to the definition given in section 1.2 
and taking reasonable design effort into account. However, the application example uncovered that 
some of the required information (e.g. the specific type of information or material flow) - unlike 
defined by the metamodels - can also be documented by attributes reducing modelling effort but not 
the information content of the model. Doing so allows the user to define customized attributes making 
the approach adaptable for a variety of application scenarios. Apart from this, the application exposed 
that some nodes possess properties which a user would normally expect to be related to edges. For 
instance, in the applied example a forklift is used for material handling between production stations. 
As the forklift is an object, it is currently modelled as a node but the material flow, accompanied by 
material handling between production stations, should be modelled with edges. A proposed solution 
for those cases (also applicable e.g. for pipes, cables or staff) would be to define that relational 
characteristics are treated as dominant.  Future research needs to examine if this simplification reduces 
the analytical capabilities of the model. 

5  CONCLUSION 

5.1. Application perspectives and future research 
The motivation for modelling factory systems explained in the introduction of this paper was to 
provide a basis for model-based analysis of ilities within complex socio-technical systems in the 
manufacturing domain. In this section, other promising application perspectives shall be proposed. As 
(Jarratt et al., 2011) point out, the assessment of change impacts in factory systems lacks suitable 
design support. The proposed metamodels could be used to analyse and predict mechanisms of change 
propagation depending on the system architecture and the respective type of manufacturing change 
considered analogous to Koh et al. (2012) and Koh et al. (2013). Changes in manufacturing systems 
are induced by a multitude of change causes such as external influences, engineering changes, and new 
production technologies. Further notable contributions within this field have been made by Giffin et al. 
(2009) and Hamraz et al. (2013).  
Another potential field of application is the evaluation of the benefits of design for changeability 
(Fricke and Schulz, 2005) or flexibility in engineering design (de Neufville and Scholtes, 2011) on 
mitigating the undesirable effects of changes (e.g. time, effort, and cost) - or even on opportunities 
resulting from uncertainty - and to get further insights in the individual contribution of supporting 
design principles such as modularity, neutrality, and ideality. In the field of complexity management, 
which is a research topic of persistent interest in product development and engineering design 
literature, the metamodels presented here are helpful to support the transfer of existing matrix-based 
methods and to enrich the quality of analysis when applied to factory systems (cf. e.g. Lindemann et 
al., 2009).  
Currently, the authors are studying opportunities to apply the modelling approach for a model-based 
evaluation of changeability-related factory system ilities. The extension of conventional graph-based 
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modelling techniques (cf. section 2.2), understanding the interdependencies of relevant ilities, a 
meaningful interpretation of graph metrics, and the transfer of network analysis as well as visual 
analytics approaches are deemed as crucial steps on the pursuit of this research objective. 

5.2. Summary 
Uncertainty about future developments is one of the major concerns of manufacturing companies. 
Flexibility or changeability have proven to be beneficial system properties in a multitude of situations 
(de Neufville and Scholtes, 2011). However, analysing and quantifying these particular ilities is a 
challenging task because they are based on a variety of supporting principles which are at least 
partially interconnected and often of a rather qualitative nature. This paper tried to contribute to the 
model-based evaluation of these properties within the manufacturing domain by the design of a graph-
based domain specific modelling approach comprising metamodels of nodes and edges including a 
variety of attributes as a first step in this research process. The design was based on metamodel and 
ontology design theory and an extensive analysis of existing frameworks in German factory planning 
literature. In addition, other promising fields of application have been outlined to inspire future 
research opportunities. 
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