
ICED15

MODELING FACTORY SYSTEMS USING GRAPHS -
ONTOLOGY-BASED DESIGN OF A DOMAIN SPECIFIC
MODELING APPROACH
Plehn, Christian; Stein, Florian; Reinhart, Gunther
Technische Universität München, Germany

Abstract
Changeable factory systems are a viable strategy for manufacturing companies to cope with dynamic
and uncertain environments, characterized by frequent engineering changes, product and technology
innovations, and continuous improvement initiatives often resulting in changes of factory systems.
Flexibility and changeability are considered beneficial properties helping to be prepared for the
various possibilities of an uncertain future. To support the analysis of these system properties, suitable
modelling techniques are required covering both structural and element properties. Hence, the
objective of this paper is to provide a graph-based domain specific modelling approach for factory
systems. Metamodels for nodes and edges are suggested based on metamodel and ontology design
theory and an extensive review of factory planning literature. The approach is demonstrated by
modelling a simple compressor shaft workshop production. Finally, promising application
perspectives of the graph-based modelling approach are outlined.

Keywords: Metamodel, Graph, System properties, Systems engineering (SE), Manufacturing

Contact:
Christian Plehn
Technische Universität München
Institute for Machine Tools and Industrial Management
Germany
christian.plehn@iwb.tum.de

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED15
27-30 JULY 2015, POLITECNICO DI MILANO, ITALY

Please cite this paper as:
 Surnames, Initials: Title of paper. In: Proceedings of the 20th International Conference on Engineering Design

(ICED15), Vol. nn: Title of Volume, Milan, Italy, 27.-30.07.2015

1

ICED15

1 INTRODUCTION

1.1. Changeable systems in a dynamic world
Designing socio-technical systems has become an increasingly challenging task. Researchers in the
domains of design as well as manufacturing have spent tremendous effort on understanding the drivers
of system changes. Investigations in effective and efficient management of change processes and the
design of easily changeable products or manufacturing systems are of further interest. With increasing
effort, since the early 1970s manufacturing science and operations management have been
approaching the concept of changeability particularly by looking through the lens of manufacturing
flexibility (de Toni and Tonchia, 1998). Research has been conducted to define suitable frameworks to
analyse different facets of flexibility and to find ways for their accurate measurement. Besides, a
variety of empirical work has investigated correlations of manufacturing flexibility with organisational
attributes, technology, and measures of firm performance (Vokurka and O'Leary-Kelly, 2000). For
about fifteen years, more recent work in manufacturing science shifted its focus from static flexibility
to dynamic flexibility which is often referred to as changeability or transformability, describing a
generic potential of a manufacturing system to cope with unpredictable future challenges, e.g.
fluctuating sales volume, new products, upcoming production technologies, and changing customer
requirements. Different so-called "enablers" of changeability have been identified, such as modularity,
scalability, mobility, compatibility, and universality of factory systems and their elements (Wiendahl
and Hernández, 2006; Koren et al., 1999). When comparing the reasoning for the importance of
changeability in engineering and manufacturing systems as well as the principles for hedging against
future uncertainties, similar challenges and concepts can be identified. Representing the perspectives
of product development, Fricke and Schulz (2005) name dynamic marketplaces, technological
evolution, and variety of environments as major drivers for systems development. To define
changeability of system architectures, they suggest the four aspects robustness, flexibility, agility, and
adaptability which are again supported by basic (e.g. ideality, modularity) and extending principles
(e.g. integrability, scalability, and decentralisation) (Fricke et al., 2000; Fricke and Schulz, 2005). In
manufacturing literature the corresponding situation is commonly referred to as a turbulent
manufacturing environment, characterised by both increasing complexity and dynamics originating
from inside (e.g. markets, politics, capital market) and outside (e.g. technologies, products, human
resources) a company (Wiendahl et al., 2007). Finally, it must be noted that changeability always
results from an interplay of more specific interrelated principles (cf. e.g. Fricke and Schulz, 2005;
Ross et al., 2008). These strategic system properties often share a uniform suffix, therefore they are
commonly referred to as "ilities" (Ross, 2008; de Weck et al., 2011).

1.2. Factory system definition
In manufacturing literature, the layer model of production systems has been established (see e.g.
Wiendahl et al., 2007). Figure 1 shows the resource view of this layer model distinguishing network,
factory, segment, line, station, and technology level. However, for the analysis of sub-sections of a
manufacturing plant this separation of levels appears too granular. Another issue arises from the use of
the system term as a layer of the model itself while this concept should be thought independent from
the level of abstraction. Hence, the following definition for factory systems is proposed: Factory
systems comprise the spatial arrangement, relations, and properties of technology, personnel, and
infrastructure in a differentiable sub-section of a manufacturing plant. The system boundary can be
drawn depending on technological or product-oriented deliberations.

1.3. Model-based analysis of factory system "ilities"
Partly driven by the increasing industrial relevance of product service systems, both engineering and
manufacturing systems are more and more understood as complex socio-technical systems, calling for
a trans-disciplinary exchange of theories, methods and results. Especially strategic properties of these
systems, the system ilities, can be interpreted and analysed for a wide range of system types. Major
contributions towards a definition and theory of ilities as well as an investigation of their relationships
and utility for protection against uncertainty and changing environments have been made by McManus
et al. (2007), Ross (2008), Ross et al. (2008), de Weck et al. (2012), and Chalupnik et al. (2013). With
the existence of unambiguous definitions of ilities, they have become accessible for analysis and

2

ICED15

evaluation. First attempts to make use of methods from structural complexity management (cf.
Lindemann et al., 2009) to interpret selected ilities by means of structural criteria have been made by
Maurer et al. (2014). Nevertheless, as ilities of systems arise from both elements and their interaction
(Chalupnik et al., 2013), a complete interpretation can only be achieved including element attributes as
well as structural metrics. However, suitable modelling techniques that capture relevant information of
manufacturing systems and enable quantitative analysis of strategic system properties are still missing.

Figure 1. Layer model of production systems and factory system definition

1.4. Objectives and research methodology
The objective of this research is to provide a modelling approach designed to enable analysis of ilities
for socio-technical systems within manufacturing plants - so called factory systems. In order to do so,
a domain specific graph modelling language is suggested based on metamodel and ontology design
theory. The domain specific language is represented by metamodels for nodes and edges. Research
activities have been guided by the following research questions:
Which level of abstraction of factory systems is suitable for the aspired analysis of ilities?
Which requirements have to be fulfilled by the modelling approach to enable the analysis of ilities?
Which elements, relations, and attributes should be included in a metamodel and how should its class
structure be designed?
The Design Research Methodology (DRM) documented by Blessing and Chakrabarti (2009) provided
guidelines for the work carried out. According to the DRM framework, the research design at hand can
be classified as a 'Type 3' where 'Research Clarification' and 'Descriptive Study I' are conducted
'review-based' while 'Prescriptive Study' and 'Descriptive Study II' are performed 'comprehensively'. In
addition to a literature review, a comprehensive study requires "a study in which the results are
produced by the researcher, i.e., the researcher undertakes an empirical study, develops support, or
evaluates support" (Blessing and Chakrabarti, 2009). To support a subsequent evaluation of results, the
success criterion of this work is defined as 'successful development of a design support for modelling
factory systems suitable for the analysis of system ilities'.
The remainder of this paper starts with a short review of different fields of application for modelling in
manufacturing science before requirements for factory system modelling are formulated. Following, a
short comparison of existing languages and methods for analysis-oriented modelling of factory
systems is made to motivate the usage of the domain specific approach chosen in this paper. After a
short theoretical introduction to metamodel and ontology design theory two metamodels are suggested
and finally used for modelling an exemplary factory system producing a compressor shaft. The paper
concludes with a discussion of potential applications and outlining opportunities for further research.

Segment

Plant

Network

Line

Cell

Station

Technology

Layer model Considered entities

 Spatial arrangement (e.g. layout,
orientation)

 Relations (e.g. material flow,
information flow)

 Properties (e.g. dimensions,
weight, capacity, capabilities)

 Technology (e.g. machine tools,
robots, storage equipment)

 Personnel (e.g. logistics &
production employees)

 Infrastructure (e.g. electricity,
compressed air, IT, floor types)

Factory system definition

Factory systems comprise

the

− Spatial arrangement,
− Relations,

− and Properties
of

− Technology,

− Personnel,
− and Infrastructure
in

a differentiable sub-section
(i.e. product- or technology-
related) of a manufacturing
plant

3

ICED15

2 MODELLING FACTORY SYSTEMS

2.1. Requirements of factory system modelling
A variety of modelling approaches exist devoted to the modelling of manufacturing plants on different
levels of detail in order to to provide support for planning, analysing, visualising, or optimising the
respective object under consideration. Some of the most prominent use cases in operations
management are optimisation of layout (e.g. spatial arrangement of machines), material flow (e.g.
capacity restrictions), production planning and control (e.g. scheduling), business processes, and
energy efficiency. However, models to evaluate strategic system properties are rarely to be found in
manufacturing literature, albeit research effort has been spent on quantifying individual ilities (e.g.
modularity). This work is an attempt to enable future research in this field by providing a suitable
modelling approach for socio-technical factory systems.
Requirements have to be specified in order to characterize the scope of modelling and to ensure that
the resulting design support is constructed according to its intended purpose. Because "ilities are
systemic properties that arise not only from the parts of a system, but also from the interactions
between them" (Chalupnik et al., 2013), models need to enable structural analysis of the whole system
as well as investigations of elements and properties. Since it is very likely that the metamodels will
have to be expanded by later users, they should be designed adaptable. Furthermore, the modelling
approach needs to enable an automated (i.e. machine-readable) quantitative analysis because of the
complexity of real-world factory systems. Finally, keeping the industrial application in mind, it is of
utmost importance to provide an attractive and intuitively understandable visual representation of the
models as well as to guarantee an acceptable effort for their generation.

2.2. A short overview of methods and tools for system modelling
A common software or system design process often requires hundreds of participants with different
backgrounds, leading to a tremendous complexity regarding information flow, relationships and other
interdependent variables (Steward, 1981; Wang et al., 2014). In the past, different methods and tools
to support this process have been developed. In the following, SysML, Object-Process Methodology
(OPM), Design Structure Matrix (DSM) and graph-based domain specific modelling (GDSM) will be
outlined briefly as these "languages" have proven their benefit for model-based systems engineering
(de Weck et al., 2011).
SysML was developed on the basis of UML and is a standardized, graphical modelling language that
is able to represent requirements, behaviour, structure and properties of systems and their components.
With the mentioned abilities SysML supports the specification, design, analysis, verification as well as
validation of complex systems (Valilai and Houshmand, 2009; Debbabi et al., 2010).
Like SysML, OPM is also derived from UML but uses a reduced set of building blocks and only one
unified type of diagram cutting the effort for generating, synchronizing and maintaining a plenitude of
diagrams for system and function modelling (Dori, 2002; de Weck et al., 2011).
Another technique to design, manage and analyse - particularly the structure - of complex engineering
systems is the DSM. The DSM "is a square N x N matrix, mapping the interactions among the set of N
system elements" highlighting a system's architecture (Eppinger and Browning, 2012). Due to the
straightforwardness and flexibility of its concept it is applied in a variety of domains. Among others,
DSM are also used in project management in order to improve planning, execution and management
of complex projects by focusing on the optimization of information flows (Steward, 1981; Gunawan,
2012). Furthermore, DSM are widely used in the field of software development (Wang et al., 2014).
For a comprehensive presentation of DSM applications see Eppinger and Browning (2012).
Network (referred to as graph in the following) and matrix approaches are dual formulations of a
system's structure (de Weck et al., 2011). Graphs consist of nodes and edges which can be directed or
undirected where nodes represent entities while edges are used to model any kind of interrelations. In
general, nodes of a graph are treated equally, resulting in a highly abstracted representation of a
system which is considered as a major drawback for the application in engineering. However, when it
comes to visualization, statistical analysis, architectural properties (i.e. graph metrics), and big data
graph-approaches demonstrate their benefits (cf. de Weck et al., 2011).
GDSM try to capitalize on the advantages of graphs while reducing the level of abstraction because a
class structure of nodes and edges is allowed. These classes are designed specific to a certain domain.

4

ICED15

As a result, GDSM stand in contrast to a general-purpose languages like UML or SysML (France and
Rumpe, 2005).

2.3. Interim conclusion: Benefits of domain specific modelling approaches
As stated above, the application of a GDSM has several advantages. Beside those mentioned
previously, the GDSM is customized for a certain problem (Giachetti et al., 2009), thus its information
content can be tailored according to the intended "resolution" and aspects of system analysis. Also,
communication among users within a domain is simplified. Finally, it has a restricted semantic scope
reducing learning efforts and leading to increased usability. On the other hand, drawbacks are the
limitation to a specific domain and the non-existence of standards (France and Rumpe, 2005). As a
consequence, the decision about using a GDSM must be based on weighting up learning effort,
modelling effort, and requirements of system analysis. Taking the named advantages into account, the
development of a GDSM is pursued here.

3 METAMODEL DESIGN FOR FACTORY SYSTEMS

3.1. Metamodelling

3.1.1. Fundamentals
According to Paige et al. (2014) "a model is a formal description of phenomena of interest, constructed
for a specific purpose, and amenable to manipulation by automated tools." In other words, models are
tools to describe the structure, behaviour and other properties abstracting from the real world,
considering specific phenomena (Sprinkle et al., 2010). The same abstraction procedure can be applied
in turn for the model itself. In that case, a so-called metamodel expresses certain properties of a model
(Jeusfeld, 2009; Paige et al., 2014). Briefly, it could be said that "a meta-model is a model that consists
of statements about a model" (Jeusfeld, 2009) or "a metamodel makes statements about what can be
expressed in the valid models of a certain modelling language" (Seidewitz, 2003). Due to the fact that
a wide range of definitions and standards (cf. Object Management Group or ISO/IEC 24744)
concerning metamodels do exist (Atkinson and Kühne, 2003; Bézivin, 2004, 2005; Seidewitz, 2003),
the understanding used within this paper shall be shared explicitly: "A metamodel is a description of
the abstract syntax of a language, capturing its concepts and relationships, using modelling
infrastructure" (Paige et al., 2014). The definition implies, that a metamodel just comprises the abstract
and not the concrete syntax of a language, i.e. it lists the allowed constructs but it does not provide
information about the right application (Jeusfeld, 2009). This circumstance allows for flexibility in the
designing and deploying process (Paige et al., 2014). The main advantages of developing metamodels
is that they document and support the language evolution over time, foster creation of well-formed
models, support model-transformations, and formal checking of model properties (Paige et al., 2014).

3.1.2 Ontology based metamodel development
Gruber (1993) defines ontologies as a "specification of a representational vocabulary for a shared
domain of discourse - definitions of classes, relations, functions, and other objects […]". Generally,
metamodels can be understood as formalised ontologies (but not vice-versa). Given the variety of
terms used for objects, relations, and attributes within the manufacturing domain, it is reasonable to
make use of the more general guidelines for ontologies to prepare for metamodel development. This
approach is used to capitalise on the advantages of thoroughly designed ontologies such as the explicit
formulation of the structure of information and the underlying assumptions of a domain, enabling
reuse of domain knowledge, and improving the quality of formal domain knowledge analysis (Noy
and McGuinness, 2001). Using the ontology development guide of Noy and McGuinness (2001), steps
1 to 5 of have been carried out iteratively: (1) Determining the domain and scope, (2) searching for
opportunities to reuse existing ontologies, (3) enumerating important terms for specified domain, (4)
defining classes and the taxonomic hierarchy, and (5) defining the properties of classes. In order to
support step 1 and 2, existing frameworks, taxonomies, and descriptions for categorizing factory
objects, relations, and attributes - with a focus on German factory planning literature - have been
analysed in detail.

5

ICED15

3.2. Metamodel of nodes
The models depicted in Figure 2 and Figure 3Figure were designed according to the factory system
definition formulated in section 1.2 and the requirements identified in section 2.1.

Figure 2. Developed nodes metamodel

The nodes metamodel in Figure 2 consists of four layers characterised by an increasing level of detail
from top to bottom. Nevertheless, it is not mandatory for every branch to comprise all four layers.
Each box in the model has an individual declaration such as 'Equipment' or 'Infrastructure'. Curly
brackets including the term 'abstract', indicate that the node will not appear as concrete in the resulting
model but is available only for the sake of inheritance. Besides, each class may contain attributes like
it is the case for Equipment. Generally, attributes describe the properties of nodes, and edges are
necessary to enrich the information content of the resulting model. Overall the developed metamodel
consists of 71 classes and 20 attributes, in order to characterize factory objects and relations regarding
performance, dimensions as well as physical and chemical properties. Due to the size of the model
only an extract can be presented here.

3.3. Metamodel of edges

Figure 3. Developed edges metamodel

Kind/Type

Production technology
and equipment

{abstract}

Operative
staff

{abstract}

Infrastructure
{abstract}

type: string

Manual
workplaces
{abstract}

age: int
tbe: string
weight: double
pos: double
orien: double
height: double
width: double
depth: double

[…]

[…]

Machinery &
equipment
{abstract}

prod: double
age: int
encon: double
tbe: string
weight: double
avail: double
pos: double
[...]

qual: string
resp: int

Manufacturing
{abstract}

Assembly
{abstract}

Machine tool […]

Primary
shaping […]2.

Specification

1.
Specification

Factory
system
domain

Logistics
employees

Production
employees

Manufacturing
employee
{abstract}

[…]
Type of

area
{abstract}

width: double
depth: double
sfpr: string
[…]

Storage
Area[…]

Legend
encon
resp

Energy consumption
Responsible for x workers

sfpr
tbe

Special foundation properties
Technical building equipment

[…]

[…]

Aggregate phase
Amperage
Information content
Duration
Type of medium
Number of items
Number of persons
Pressure
Speed of transmission
Topicality
Torque
Type of good
Type of information
Volume flow

Scope

Mechanical
energy

1.
Specification

Energy
flow

Information-/
communication

flow

freq: int
inco: string
typi: string
dur: double

Un-
documentedKind/Type

Verbally [...]

Documented

spet: double
topi: string

Staff flow

nrper: int
dist: double

Electrical
energy

volt: double
amp: double

Thermal
energy

Kinetic
energy

torq: double
mass: double
speed: double

Kind of
conduction

pres: double
temp: double
[…]

Medium flow

medi: string
aggr: string
cap: double
volf: double

Material flow

tygo: string
nrit: int
weight: double
[...]

Legend
aggr
amp
Inco
dur
medi
nrit
nrper
pres
spet
topi
torq
tygo
typi
volf

6

ICED15

To represent the relationships between different factory objects, a metamodel of edges had to be
designed as shown in Figure 3. In contrast to the metamodel of nodes, the edges metamodel has just
three layers: 'Scope', 'Kind/Type' and '1. Specification'. It is assumed that the relationships between the
objects can be described with five types of flows. Those again have an increasing level of detail from
top to bottom. However, note that in contrast to the nodes metamodel all edges are classified as
concrete. This way, the user is not obliged to specify the types of flows in more detail than the 'Scope'
level. Classifying edges (or nodes) as abstract or concrete thus implicitly sets the level of detail within
models.

4 APPLICATION

4.1. Academic example
The underlying academic example is excerpted from Müller and Ackermann (2013). In the original
factory planning case study, five components of a compressor are produced using fifteen types of
manufacturing equipment. The factory layout of this workshop production is illustrated in the upper
part of Figure 4. In order to keep the applied example as simple as possible, the case study was
reduced to just one component, which is a compressor-shaft, and six corresponding machine tools.
Each of those stations is operated by a machinist or auxiliary worker. Besides the machine tools a bay
warehouse, buffers, and several storage areas are required.

Figure 4. Exemplary graph model for a compressor shaft production

Legend

Staff node

Equipment node

Infrastructure node

Directed flow

Directed
information flow

DetailFactory system graph model

Machinist

Power connector

Grinding machine

Milling machine

Factory layout

Drilling

Welding

Turning

Milling

Grinding

Conservation

Washing

Storage

Office

7

ICED15

4.2. Design tool Soley Studio 2
The application example was modelled in Soley Studio 2 which is based on the work of Helms on
object-oriented graph grammars (Helms, 2013). The general purpose of this software tool is to merge
distributed data from different sources in a graph-based representation to support overarching
analyses. Beside other features, Soley Studio 2 can detect hidden dependencies or patterns and is
capable to model and visualise complex coherences in a clear, understandable way providing useful
insights in extensive graph-based data. In addition, with its integrated workflow automation, analysis
knowledge of domain experts can be formalized and applied through automated workflows. Thereby,
the knowledge inherent in these workflows can be used by anyone, e.g. to perform sophisticated
analyses in decision-making situations. For more information about the software please refer
to: www.soley-technology.com.

4.3. Review of application experiences
Although the modelled factory system was strongly simplified Figure 4 shows a considerable level of
complexity due to the amount of relationships among manufacturing resources. To exemplify a simple
and intuitive visual analysis, all machine tools have been scaled linearly depending on their mass. The
process of modelling revealed that the metamodel's level of detail is designed appropriate to capture
important structural properties of the factory system according to the definition given in section 1.2
and taking reasonable design effort into account. However, the application example uncovered that
some of the required information (e.g. the specific type of information or material flow) - unlike
defined by the metamodels - can also be documented by attributes reducing modelling effort but not
the information content of the model. Doing so allows the user to define customized attributes making
the approach adaptable for a variety of application scenarios. Apart from this, the application exposed
that some nodes possess properties which a user would normally expect to be related to edges. For
instance, in the applied example a forklift is used for material handling between production stations.
As the forklift is an object, it is currently modelled as a node but the material flow, accompanied by
material handling between production stations, should be modelled with edges. A proposed solution
for those cases (also applicable e.g. for pipes, cables or staff) would be to define that relational
characteristics are treated as dominant. Future research needs to examine if this simplification reduces
the analytical capabilities of the model.

5 CONCLUSION

5.1. Application perspectives and future research
The motivation for modelling factory systems explained in the introduction of this paper was to
provide a basis for model-based analysis of ilities within complex socio-technical systems in the
manufacturing domain. In this section, other promising application perspectives shall be proposed. As
(Jarratt et al., 2011) point out, the assessment of change impacts in factory systems lacks suitable
design support. The proposed metamodels could be used to analyse and predict mechanisms of change
propagation depending on the system architecture and the respective type of manufacturing change
considered analogous to Koh et al. (2012) and Koh et al. (2013). Changes in manufacturing systems
are induced by a multitude of change causes such as external influences, engineering changes, and new
production technologies. Further notable contributions within this field have been made by Giffin et al.
(2009) and Hamraz et al. (2013).
Another potential field of application is the evaluation of the benefits of design for changeability
(Fricke and Schulz, 2005) or flexibility in engineering design (de Neufville and Scholtes, 2011) on
mitigating the undesirable effects of changes (e.g. time, effort, and cost) - or even on opportunities
resulting from uncertainty - and to get further insights in the individual contribution of supporting
design principles such as modularity, neutrality, and ideality. In the field of complexity management,
which is a research topic of persistent interest in product development and engineering design
literature, the metamodels presented here are helpful to support the transfer of existing matrix-based
methods and to enrich the quality of analysis when applied to factory systems (cf. e.g. Lindemann et
al., 2009).
Currently, the authors are studying opportunities to apply the modelling approach for a model-based
evaluation of changeability-related factory system ilities. The extension of conventional graph-based

8

ICED15

modelling techniques (cf. section 2.2), understanding the interdependencies of relevant ilities, a
meaningful interpretation of graph metrics, and the transfer of network analysis as well as visual
analytics approaches are deemed as crucial steps on the pursuit of this research objective.

5.2. Summary
Uncertainty about future developments is one of the major concerns of manufacturing companies.
Flexibility or changeability have proven to be beneficial system properties in a multitude of situations
(de Neufville and Scholtes, 2011). However, analysing and quantifying these particular ilities is a
challenging task because they are based on a variety of supporting principles which are at least
partially interconnected and often of a rather qualitative nature. This paper tried to contribute to the
model-based evaluation of these properties within the manufacturing domain by the design of a graph-
based domain specific modelling approach comprising metamodels of nodes and edges including a
variety of attributes as a first step in this research process. The design was based on metamodel and
ontology design theory and an extensive analysis of existing frameworks in German factory planning
literature. In addition, other promising fields of application have been outlined to inspire future
research opportunities.

REFERENCES
Atkinson, C. and Kühne, T. (2003), “Model-Driven Development: A Metamodeling Foundation”, IEEE

Software, Vol. 20 No. 5, pp. 36–41.
Bézivin, J. (2004), “Model Engineering for Software Modernization”, Proceedings of the 11th IEEE Working

Conference on Reverse Engineering, p. 4.
Bézivin, J. (2005), “On the unification power of models”, SoSyM, Vol. 4 No. 2, pp. 171–188.
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM: A Design Research Methodology, Springer, London.
Chalupnik, M.J., Wynn, D.C. and Clarkson, P.J. (2013), “Comparison of ilities for protection against uncertainty

in system design”, Journal of Engineering Design, Vol. 24 No. 12, pp. 814–829.
de Neufville, R. and Scholtes, S. (2011), Flexibility in Engineering Design, Engineering Systems Series, MIT

Press, Cambridge, MA.
de Toni, A. and Tonchia, S. (1998), “Manufacturing flexibility: a literature review”, International Journal of

Production Research, Vol. 36 No. 6, pp. 1587–1617.
de Weck, O.L., Roos, D. and Magee, C.L. (2011), Engineering Systems: Meeting Human Needs in a Complex

Technological World, Engineering Systems Series, MIT Press, Cambridge, MA.
de Weck, O.L., Ross, A.M. and Rhodes, D.H. (2012), “Investigating Relationships and Semantic Sets amongst

System Lifecycle Properties (Ilities)”, 3rd International Engineering Systems Symposium (CESUN 2012),
pp. 1–12.

Debbabi, M., Hassaïne, F., Jarraya, Y., Soeanu, A. and Alawneh, L. (2010), Verification and Validation in
Systems Engineering: Assessing UML/SysML Design Models, Springer, Heidelberg et al.

Dori, D. (2002), Object-Process Methodology: A Holistic Systems Paradigm, Springer, Berlin Heidelberg.
Eppinger, S.D. and Browning, T.R. (2012), Design Structure Matrix Methods and Applications, Engineering

Systems Series, MIT Press, Cambridge, MA.
France, R. and Rumpe, B. (2005), “Domain specific modeling”, SoSyM, Vol. 4 No. 1, pp. 1–3.
Fricke, E., Gebhardt, B., Negele, H. and Igenbergs, E. (2000), “Coping with Changes: Causes, Findings, and

Strategies”, Systems Engineering, Vol. 3, pp. 169–179.
Fricke, E. and Schulz, A.P. (2005), “Design for changeability (DfC): Principles to enable changes in systems

throughout their entire lifecycle”, Systems Engineering, Vol. 8 No. 4, pp. 342–359.
Giachetti, G., Marín, B. and Pastor, O. (2009), “Using UML as a Domain-Specific Modeling Language: A

Proposal for Automatic Generation of UML Profiles”, in van Eck, P., Gordijn, J. and Wieringa, R. (Eds.),
Advanced Information Systems Engineering, Lecture Notes in Computer Science, Vol. 5565, Springer
Berlin Heidelberg, pp. 110-124.

Giffin, M., de Weck, O.L., Bounova, G.A., Keller, R., Eckert, C.M. and Clarkson, P.J. (2009), “Change
Propagation Analysis in Complex Technical Systems”, Journal of Mechanical Design, Vol. 131 No. 8.

Gruber, T.R. (1993), “A Translation Approach to Portable Ontology Specifications”, Knowledge Acquisition,
Vol. 5 No. 2, pp. 199–220.

Gunawan, I. (2012), “Managing Complex Engineering Projects with Design Structure Matrix Methods”, in
Mathew, J., Ma, L., Tan, A., Weijnen, M. and Lee, J. (Eds.), Engineering Asset Management and
Infrastructure Sustainability, Springer London, pp. 275-282.

Hamraz, B., Hisarciklilar, O., Rahmani, K., Wynn, D.C., Thomson, V. and Clarkson, P.J. (2013), “Change
prediction using interface data”, Concurrent Engineering: Research and Applications, Vol. 21 No. 2, pp.
141–154.

9

ICED15

Helms, B. (2013), “Object-Oriented Graph Grammars for Computational Design Synthesis”, Diss., TUM, 2013.
Jarratt, T.A.W., Eckert, C.M., Caldwell, N.H.M. and Clarkson, P.J. (2011), “Engineering change: an overview

and perspective on the literature”, Journal of Research in Engineering Design, Vol. 22, pp. 103–124.
Jeusfeld, M.A. (2009), “Metamodel”, in Liu, L. and Özsu, M.T. (Eds.), Encyclopedia of Database Systems,

Springer US, pp. 1727-1730.
Koh, E.C.Y., Caldwell, N.H.M. and Clarkson, P.J. (2012), “A method to assess the effects of engineering change

propagation”, Journal of Research in Engineering Design, Vol. 23, pp. 329–351.
Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G. and van Brussel, H. (1999),

“Reconfigurable Manufacturing Systems”, CIRP Annals - Manufacturing Technology, Vol. 48 No. 2, pp.
pp. 527–540.

Lindemann, U., Maurer, M. and Braun, T. (2009), Structural Complexity Management: An Approach for the
Field of Product Design, Springer, Berlin.

Maurer, M., Maisenbacher, S. and Kasperek, D. (2014), “Strukturbasierte Modellierung und Bewertung
disziplinübergreifender Entwicklungszusammenhänge”, in Vogel-Heuser, B., Lindemann, U. and Reinhart,
G. (Eds.), Innovationsprozesse zyklenorientiert managen: Verzahnte Entwicklung von Produkt-Service-
Systemen, Springer Vieweg, Berlin Heidelberg, pp. 15–29.

McManus, H.L., Richards, M.G., Ross, A.M. and Hastings, D.E. (2007), “A Framework for Incorporating
"ilities" in Tradespace Studies”, AIAA Space, Vol. 1, pp. 941–954.

Müller, E. and Ackermann, J. (2013), “Fallstudie Fabrikplanung. Lehrunterlagen zur Durchführung eines
Planungsprojektes”, available at: https://www.yumpu.com/de/document/view/27348097/fallstudie-
fabrikplanung-technische-universitat-chemnitz/1 (accessed December 2014).

Noy, N.F. and McGuinness, D.L. (2001), Ontology Development 101: A guide to creating your first ontology,
Stanford Knowledge Systems Laboratory Technical Reports.

Paige, R.F., Kolovos, D.S. and Polack, F.A.C. (2014), “A tutorial on metamodelling for grammar researchers”,
Science of Computer Programming, Vol. 96 No. 1, pp. 396–416.

Ross, A.M. (2008), Defining and Using the New "ilities", MIT Systems Engineering Advancement Research
Initiative (Working Paper Series).

Ross, A.M., Rhodes, D.H. and Hastings, D.E. (2008), “Defining Changeability: Reconciling Flexibility,
Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value”, Systems
Engineering, Vol. 11 No. 3, pp. 246–262.

Seidewitz, E. (2003), “What models mean”, IEEE Software, Vol. 20 No. 5, pp. 26–32.
Sprinkle, J., Rumpe, B., Vangheluwe, H. and Karsai, G. (2010), “Metamodelling. State of the Art and Research

Challenges”, in Giese, H., Karsai, G., Lee, E., Rumpe, B. and Schätz, B. (Eds.), Model-Based Engineering
of Embedded Real-Time Systems, Lecture Notes in Computer Science, Springer Berlin, pp. 57-76.

Steward, D.V. (1981), “The Design Structure System: A Method for Managing the Design of Complex
Systems”, IEEE Transactions on Engineering Management, Vol. 28 No. 3, pp. 71–74.

Valilai, O.F. and Houshmand, M. (2009), “Advantages of using SysML Compatible with ISO 10303-233 for
Product Design and Development based on STEP Standard”, Proceedings of the World Congress on
Engineering and Computer Science, pp. 1–4.

Vokurka, R.J. and O'Leary-Kelly, S.W. (2000), “A review of empirical research on manufacturing flexibility”,
Journal of Operations Management, Vol. 18, pp. 485–501.

Wang, B., Madani, F., Wang, X., Wang, L. and White, C. (2014), “Design Structure Matrix”, in Daim, T.U.,
Pizarro, M. and Talla, R. (Eds.), Planning and Roadmapping Technological Innovations, Innovation,
Technology, and Knowledge Management, Springer International Publishing, pp. 53-65.

Wiendahl, H.-P., ElMaraghy, H.A., Nyhuis, P., Zäh, M.F., Wiendahl, H.-H., Duffie, N. and Brieke, M. (2007),
“Changeable Manufacturing - Classification, Design and Operation”, CIRP Annals - Manufacturing
Technology, Vol. 56 No. 2, pp. pp. 783–809.

Wiendahl, H.-P. and Hernández, R. (2006), “The Transformable Factory - Strategies, Methods and Examples”,
in Dashchenko, A.I. (Ed.), Reconfigurable Manufacturing Systems and Transformable Factories, Springer,
Berlin, Heidelberg, pp. 383–393.

ACKNOWLEDGMENTS
The German Research Foundation (DFG) funds this research and development project. We extend our
sincere thanks to the DFG for the generous support of the work described in this paper, resulting from
subproject B4 “Cycle-oriented production structure planning” in the framework of the Collaborative
Research Centre 768 (SFB 768) “Managing cycles in innovation processes – Integrated development
of product service systems based on technical products”.

10

	Modeling Factory Systems Using Graphs - Ontology-based Design of a Domain Specific Modeling Approach
	Abstract

	1 Introduction
	1.1. Changeable systems in a dynamic world
	1.2. Factory system definition
	1.3. Model-based analysis of factory system "ilities"
	1.4. Objectives and research methodology

	2 Modelling factory systems
	2.1. Requirements of factory system modelling
	2.2. A short overview of methods and tools for system modelling
	2.3. Interim conclusion: Benefits of domain specific modelling approaches

	3 Metamodel design for factory systems
	3.1. Metamodelling
	3.1.1. Fundamentals
	1
	2
	3
	3.1
	3.1.1
	3.1.2 Ontology based metamodel development

	3.2. Metamodel of nodes
	3.3. Metamodel of edges

	4 Application
	4
	4.1. Academic example
	4.2. Design tool Soley Studio 2
	4.3. Review of application experiences

	5 Conclusion
	5.1. Application perspectives and future research
	5.2. Summary
	REFERENCES
	Acknowledgments

