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ABSTRACT 
Development platforms are automated software tools used to synthesize new designs. They are 

prevalent in the embedded system design domain, with applications ranging from integrated circuits, 

circuit boards, electro-mechanical controls, and entire networked systems. Historically, this has 

enabled rapid and error-free design of very complex embedded software and electronics hardware, 

even those that control mechanical systems such as aerospace and automotive controls through 

automation of the design process. The state of mechanical design automation has far less commercial 

adoption or industrial demonstration of development platforms in mechanical design. This paper 

elaborates on what challenges mechanical design automation faces to reach the level of design 

automation in the embeded systems domain. Given a design library approach, it is concluded that 

uncertainty management is a key issue for future research, including model uncertainty for mechanical 

design modeling. These issues are then contextualized using a case from the aerospace industy. 
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1 INTRODUCTION 

In this paper, Development platforms are discussed and explored in relation to the difficulties of 

mechanical system design. Development platforms are automated software tools used to synthesize 

new designs. They are prevalent as standard practice in the embedded system design domain, with 

applications ranging from integrated circuits, circuit boards, electro-mechanical controls, and entire 

networked systems. Design is executed through progressively more detailed analyses using the 

interlinked software tools of the development platform, from early software block diagram analysis to 

progress lower-level code development such as C-code and hardware in the loop simulation, to 

detailed chipset selection and board level logic design, and down to levels even more detailed such as 

custom integrated circuits. A key enabler is the semi-automated expansion of detail when progressing 

from one analysis to the next more detailed (e.g. Simulink to C). To do this, the integrated design tools 

make use of pre-defined libraries of standard components, where a component is represented 

appropriately in each design tool. The first key feature of development platforms is the hierarchical 

shared library of components and functional requirements, represented using a finite vocabulary upon 

which all possible system designs are computationally synthesized. The second key feature of 

development platforms is the hierarchical progression of ever more detailed models and analysis, 

effectively sequenced. The set of hierarchical software analyses along with the vertical library of 

components form what is called in this paper a development platform.  

The process of using development platforms is a form of computationally assisted design referred to 

here as Software-Platform Based-Design, more specifically the computational process of system 

architectural matching between a library of pre-defined functional requirements to a set of pre-defined, 

quantified components, repeated progressively in layers. Historically developed in the embedded 

systems design community (Sangiovanni-Vincetelli 2007), software-platform-based-design has 

enabled rapid and error-free design of very complex embedded software and electronics hardware, 

even those that control mechanical systems such as aerospace and automotive controls. Vendors offer 

standard-work tools and processes as tool chains (Cadence 2012), as well as training courses on the 

standard work (design flows) to use the tools. There are also electronics manufacturer specific 

implementations, for example Intel (2010) or ST Microelectronics (Dubois et al 2006) offer design 

training and tools on their development platforms.  

The state of mechanical design automation has far less commercial adoption or industrial 

demonstration of development platforms. There are no widespread commercial development platforms 

that allow the automated deep design of mechanical systems from functional descriptions. The state of 

research has been exploring this domain for some time, looking for significant design process 

productivity improvements. To do so however, this paper argues that several significant design science 

hurdles remain to be overcome. This paper elaborates on what challenges mechanical design 

automation faces to reach the level of design automation in the embedded systems domain.  

2 MECHANICAL DESIGN AUTOMATION RESEARCH REVIEW 

There is a rich history of research into mechanical design automation. Ward (1993) attempted early 

original work to develop a mechanical design compiler. Szykman et al (2001) worked for some time 

on a design library at NIST. Fogliatto et al (2012) provide a recent review of the literature in mass-

customization design-automation. Among others, Helo et al (2010) and Ma et al (2008) have 

developed sales configurator tools, to assemble components to match requirements. Kortoglu et al 

(2009) speculate that a grammar parsing based approach would be effective for mapping functions to 

component libraries. Kortoglu et al (2010) offer a taxonomy of components for constructing 

mechanical design libraries for use in functional based synthesis. Wyatt et al (2009) compares 

available modeling languages and assesses their abilities in representing and modeling mechanical 

design concerns such as cost, weight, performance, reliability, etc. Melkote (2012) report on progress 

to create an automated fabrication facility (iFAB) where parts and assemblies can be fabricated based 

on assemblies of libraried mechanical components. It is not clear how well such resulting systems 

actually perform, nor how well even the assembly system itself performs. The FANG design challenge 

with the vehicle forge DARPA grantees (2012) seeks to automate the design of a military land vehicle 

using mechanical libraries and design automation.  
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3 DESIGN AUTOMATION USING HIERARCHICAL LAYERED 

DEVELOPMENT PLATFORMS 

In early design phases, the design may be represented as simple hierarchical breakdowns of 

requirements and solutions, for example using function-means modelling. In detailed design, these 

hierarchical function-solution structures may be kept, however, to compute a system design solution 

using calculations. To do this, both the design requirements and the available solution assets must be 

computationally represented. Solution assets may be mechanical subassemblies or components in a 

system block diagram analysis, or could be functional blocks representing classes of solutions in an 

earlier functional synthesis step. At any level of abstraction, though, the design calculation is to match 

requirements to solution assets and eliminate infeasible solutions that do not meet the requirements. 

Software-platform-based-design sequences these calculations to use more simplified models earlier to 

filter large portions of the design space, but not over-filter.  

Such solution-asset filtering calculations can be extremely complex, for example in the 

thermodynamic mechanical system domain this has been done using numerical search for worst case 

performance over operating conditions using simulation-code runs, all to simply evaluate one design 

configuration instance against a single thermodynamic performance requirement. Yet, it can be 

automated. Doing such calculations filters out solutions that do not meet requirements. Arguably, the 

successes mentioned previously have demonstrated this only in confined domains, e.g. sales 

configuration tools. This is not addressing the richness of the engineering design challenges faced in 

mechanical design, where progressively more detailed analyses are needed to ensure the system, 

modules, components and design features properly function and can be manufactured.  

The software-platform-based-design approach addresses this sequence problem in the embedded 

system design domain. It is a unique methodology in that it sequences the solution-set reduction 

calculations at increasing levels of abstraction. There is not one model, but several models at 

increasing abstraction levels, where in each abstraction level, there are solution-asset models of the 

same solution assets (e.g., typically parallel component libraries in each tool). Progressively one 

eliminates assets inconsistent with additionally considered requirements, thereby refining the set of 

considered assets into smaller sets of consistent solutions. This is staged as progressively more detailed 

analyses, where such ordering is dependent on the problem domain. Therefore, platform based design 

is fundamentally consistent with the design theory of set-based design which has been argued as 

necessary for lean mechanical design, as executed in a non-computational manner by firms such as 

Toyota (Sobek et al 1999). Set-based design is achieved when bad portions of the design space are 

eliminated, rather than generating point solutions and the eliminating them. Depicting the entire design 

space is often prohibited by the mere size and the complex relationships (Deubzer and Lindemann, 

2009). In spite of that, some authors, e.g. Raudberget (2011) propose methods for creating a 

comprehensive representation of a design space. Still, the paradigm of CAD and CAE today does not 

allow for modeling design spaces, as much as they are optimized for modeling point solutions. Burr et 

al. (2003) argues that IT-tools in general are not adapted to new design practice.  

Platform-based design addresses these concerns by negotiating increasingly detailed analysis layers 

through aligned models of increasing detail; this is as advocated by for example Deubzer and 

Lindemann (2009). In the platform based design of aerospace thermodynamic systems, the heat 

exchangers, compressors and valves are typical components. There is a set of such components that are 

available to be used (possibly off the shelf or possibly not yet built). Each such component must be 

represented at each layer of abstraction, from a simple equation based architectural analysis layer to 

detailed sizing layer to a more detailed system dynamics layer, on down to detailed mechanical 

component feature design layers. This creates vertically aligned component libraries of progressive 

detail. At the highest level all heat exchangers have been modelled as a function which can be 

connected by pipes, with a few performance variables such as flow rate and heat rejection capacity 

alone defining the function. This can be used in architectural block diagram analyses to generate many 

architectural alternatives (many piping combinations of pumps, compressors, valves and heat 

exchangers). Several alternative architectures might all be deemed as meeting the functional 

requirements, at this level of rough analysis. Each of these architectures are then automatically refined 

in the next more detailed layer of analysis, through parameter alignment of and auto-configuration of 

component detail. In this example, more detailed thermodynamic sizing models of the heat exchangers 

form the next layer of analysis. These sizing models pre-exist and are available as parameterized 

component library elements in this more refined sizing analysis layer. The sizing analysis models are 
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physics based and are used to compute the dimensions of different heat exchanger configuration 

variables (lengths, widths, fin spacing, etc.) to provide the flow rate and heat rejection capability 

previously determined with the high abstraction level models. This refined analysis eliminates many 

configurations. This is continued into several more layers of detail, including geometric packaging, 

dynamic response, tolerances and other considerations as layered analyses. All such analysis layers 

have internal component library models of the same available assets (e.g. heat exchangers that can be 

designed and manufactured). Pre-configured physics based models are used at each layer to perform 

analyses that resolve issues of worst case operating conditions and testing requirements, variations of 

material and manufacture, and opportunities for design improvement. The result is a progress 

refinement of the design from many alternatives to an optimized mechanical design that meets all 

stated requirements at all levels of detail needed.  

Though not the main focus in aero engine manufacture, powertrain development etc., and thus not in 

this paper, other research is exploring incorporating softer requirements such as styling in design 

automation (Reid, et al., 2012). There are also methods for combining optimization of manufacturing 

constraints with soft requirements such as economic and social sustainability (Hoffenson, et al., 2013).  

Weber, et al. (2003) highlight the issue of the vast flora of models used to represent a mechanical 

design. To facilitate design automation, models need to be integrated and support the process of going 

from desired product properties to required product characteristics; design synthesis. In a later 

publication, Weber and Duebel (1993) claim that PDM and PLM system solutions exclusively manage 

characteristics data, and are unable to manage performance properties, a statement still true today.  

Modeling products in a way that allows for automatic design synthesis is immensely time consuming, 

and companies rarely have the competence to create those mathematical models of the design that can 

implement in a design automation IT-tool (Schotborgh, et al., 2009). 

Others have argued that computational approaches are generally not possible for non-VLSI design 

domains, due to the inherent higher power nature of non-VLSI systems, the difficulty in creating 

component libraries, the multi-physics nature of mechanical design, and the larger set of engineers 

needed to design non-VLSI systems (Whitney 1996). Recent history with much increased mechanical 

design software tool capabilities are refuting these arguments, incorporating advances in 

computational mechanical component libraries, methods for fitting accurate and rapid reduced order 

models, and trade-space analysis tools. High power ESD applications have been demonstrated 

successful (Bathily et al 2012), as well as mechanical systems (Elmqvist et al 2003).  

4 RESEARCH NEEDS IN MECHANICAL DEVELOPMENT PLATFORMS 

Given these explanations do not seem to fully explain why electronics (and more generally embedded 

systems) can be more easily automated than mechanical systems, further scrutiny is needed. We 

observe that a key enabler of VLSI design was the reduction of uncertainty in field effects (heat, 

electro-magnetic radiation, etc.) to a tolerance (eg, minimum line widths and minimum spacing of 

circuit components to avoid interference and electrical leaks) (Nassif, 1984, Taylor and Boning, 2010). 

Such a reduction of difficult field effect analyses to geometric requirements simplifies the design task 

to a geometric constrained layout task which can be easily accommodated in VLSI design tools. No 

such equivalent mechanism to eliminate uncertainty exists in mechanical design. The multi-

dimensional geometric performance evaluations inherently use physical simulation models. 

Unfortunately, such models cannot predict outcomes with sufficient accuracy to guarantee 

conformance to requirements, and the result is usually several prototype iterations. Model uncertainty 

management at multiple levels of abstraction of multiple interacting physics is needed to enable 

automated design flows at the different layers of abstraction, to ensure early computed decisions are 

consistent with later variations from models used in those early decisions.  

Intrinsic to computational design automation is the analysis-based association of design components 

with functional requirements, through equations, simulations, relations or heuristic logic. To correctly 

refine a set of alternative designs computationally to a refined few, correct assessment of requirements 

violations or consistency must be determined. This is violated when the models used have inherent 

abstraction and therefore uncertainty. Representing, forecasting, and pre-mitigating model uncertainty 

is an essential design-science problem for mechanical design automation (and software platform based 

design in particular) to become successful.  

A second design science issue with software-platform-based mechanical design is managing the 

further uncertainty surrounding the development of the manufacturing system. In electronic and 
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embedded systems design, the production system is given. In mechanical design, this is not so, the 

design of the tooling occurs simultaneously with the design of the components. The design of the 

assembly system occurs simultaneously with the layout design activity. While not a hard barrier, the 

issue remains that mechanical design cannot in general assume a given production system. The 

production system must also be auto-generated in the same manner with the product design.    

A third design science issue with software-platform-based mechanical design is establishing effective 

process design flows. With the multitude of performance requirements, manufacturability and ease of 

assembly concerns, etc., it is not apparent a-priori which analysis to do in what sequence. It is not clear 

there is an overall best sequence of design tasks to cover an arbitrarily large class of mechanical design 

problems.  

A fourth design science issue with software-platform-based mechanical design is the perceived 

limitations found in using pre-defined sets of quantified available components. The design space is 

restricted to the set of pre-defined alternatives. In design practice, this is not really a concern since the 

design engineers are always restricted to certified components, and new designs with large system 

design gaps can be assessed against critical components and new component targets thereby defined. 

Yet, a refined argument surrounds the inherent reduced design space one finds with a finite set of 

quantified available components (Doyle and Csete 2007). The infinitely large design space is reduced 

to a countable set of alternatives using a finite vocabulary quantifying the available components (the 

so-called hourglass nature of complex systems). The vocabulary chosen to quantify the components 

may not be the most effective descriptor variables for the system design problem.  

5 UNCERTAINTY QUANTIFICATION 

Over the past few decades, advances in computational capabilities have made computer simulation of 

physical processes an important tool used in the design of engineering systems (Agarwal, et al., 2004, 

Oberkampf and Trucano, 2002). Uncertainty quantification is the scientific field of quantitative 

characterization and reduction of uncertainties in applications. As computer simulation modeling is a 

commonly used approach to study problems in uncertainty quantification, a framework has been 

developed to account for different types of uncertainties. Three different classes of uncertainties are 

identified (Agarwal, et al., 2004, Apley, et al., 2006, Oberkampf, et al., 2002, Youn, et al., 2007): 

1. Aleatory uncertainty is also known as irreducible, inherent or stochastic uncertainty or 

variability. This uncertainty is associated with the inherent variation in the physical system or 

environment under consideration, for example, uncertainty of incoming material, initial part 

geometry, tooling setup, process setup, and operating environment (Chen, et al., 2004). 

Aleatory uncertainty can generally be estimated by a probability or frequency distribution 

when sufficient information is available (Oberkampf, DeLand et al. 2002).  

2. Epistemic uncertainty is also known as reducible, subjective or cognitive uncertainty. It can 

be defined as a potential inaccuracy associated with the deficiency in any phase or activity in 

the simulation process that originates in a lack of system knowledge, for example, uncertainty 

associated with the lack of knowledge in laws describing the behavior of the system under 

various conditions (Chen, et al., 2004). 

3. Error is defined as a recognizable inaccuracy in any phase or activity of modeling and 

simulation that is not due to a lack of knowledge. This error can be either acknowledged or 

unacknowledged. An example is the uncertainty associated with the limitations of numerical 

methods used to construct simulation models (Chen, et al., 2004). 

There is also a distinction being made between acknowledged and unacknowledged errors. 

Acknowledged errors are inaccuracies that are recognized by analysts, whereas unacknowledged errors 

are inaccuracies that are not recognized by analysts (Oberkampf, et al., 2002).  Oberkampf et al. 

(2002) have put forth a comprehensive framework for categorizing uncertainties in activities 

conducted during the phases of computational modeling and engineering The simulation process can 

be divided into six phases, each of which introduces its own set of uncertainties.  

The conceptual modeling of the physical phase occurs before any mathematical or simulation models 

have been initiated. The initial step is system/environment specification—the process of determining 

which physical events should be considered and where to define the boundaries between system and 

environment. This phase introduces epistemic uncertainties. When modeling physical events with 

mathematical or simulation models, scenario abstraction is a prerequisite. For instance, dynamic 
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phenomena will often be simplified to quasi-static models. After systems, environments and scenarios 

have been specified, options for possible physics couplings should be identified. . 

This mathematical modeling translates the conceptual model into detailed and precise mathematical 

problems, i.e. analytical statements of the problem. Even the most complex computer simulation is 

composed of many mathematical submodels. The mathematical modeling includes the complete 

specification of all the partial differential equations (PDEs), auxiliary physical conditions, boundary 

conditions (BCs) and initial conditions (ICs). Uncertainties in the PDEs can for instance be found in 

the conservation equations for mass, momentum and energy, which form the basis of CFD and FEA 

simulations. These uncertainties can be either epistemic or acknowledged errors. Examples of 

uncertainties in the auxiliary physical conditions might be limitations in turbulence models of CFD 

simulations, or in material-constitutive equations in FEA. Uncertainties in BCs and ICs include 

uncertainties in loads and geometries. Nondeterministic representation activities are associated with 

assigning probability distribution functions (PDFs) to uncertainty parameters.  

In the discretization and algorithm selection phase addresses the conversion from continuous to 

discrete mathematics, which is usually needed to calculate a numerical solution. In this phase, all of 

the spatial and temporal differencing methods, discretized BCs, discretized geometric boundaries and 

grid generation methods are specified in analytical form. Algorithms are prescribed, but the spatial and 

temporal step sizes are not specified. Another activity is specifying the methodology that will be used 

to accommodate the nondeterministic aspect of the problem, such as Monte Carlo or response surface 

methods. 

In the computer programming phase, software errors are introduced. Input preparation refers to how 

the mathematical model is converted into data elements usable by the software. Module design, 

coding, compilation and linkage refer to the construction of the software itself.  

In the next phase the numerical solutions are computed. This phase includes uncertainties associated 

with spatial, temporal and iterative convergence. An example of spatial convergence is mesh density 

errors, whereas temporal convergence concerns time steps of dynamic simulations. Iterative 

convergence is usually an issue when working with CFD simulations. 

The final phase deals with the representation of the numerical solution. Computer simulations 

generally have millions of data points and in order to represent these, post-processing is needed. A 

common tool is color-coded, three-dimensional graphical visualization. Another method would be to 

extract mean, minimum and maximum values of a simulation to draw conclusions. These activities are 

dependent on interpretation, and as such, may introduce unique types of error.  

6 UNCERTANTIES IN TURBINE REAR STRUCTURE DESIGN 

A case from the aerospace industry is used to contextualize uncertainties in reference to a real design 

case, in this case illustrated by a turbine rear structure (TRS) (Figure 1). The TRS, located in the rear 

end of a jet engine have a range of functional criteria from various fields of engineering. They need to 

be able to withstand significant thermal and structural loads. In addition, to optimize fuel efficiency, 

they need to be as light and aerodynamic as possible. These functionality criteria must be balanced in 

order to obtain an optimal design. 

 
Figure 1: Turbine Rear Structure (marked in red) 

However, manufacturability criteria are often difficult to quantitatively assess in the design 

optimization process. As a result, designs optimized from a functionality perspective are expensive or 

unfeasible to realize in practice. To avoid this scenario, functionality and manufacturability need to be 

balanced in order to find the truly optimal design (Runnemalm, et al., 2009). One of the key 
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limitations of manufacturability is geometric variation, i.e. the dimensions of a manufactured product 

deviate from the nominal geometry. The structures are usually welded assemblies consisting of cast, 

wrought and sheet metal parts. The ingoing parts all have some degree of geometric variation. This 

part variation propagates through the fixturing and welding process into the final assembly and 

ultimately affects the performance of the engine. The assembly variation is dependent on part design, 

placement of fixturing points and welding sequence, and the impact of these late phase variations can 

be vastly different simply depending on the initial design concept and architecture.   

A number of uncertainties need to be managed to be able to apply design automation to the turbine 

structure design process. On a conceptual level, there is epistemic uncertainty in interface loads, as 

well as uncertainty raised from using abstract models as compared to the later more detailed models. 

On a mathematical level, uncertainties might arise from the conservation equations for mass, 

momentum and energy, which form the basis for CFD and FEM simulations necessary to evaluate 

concepts. Also, auxiliary physical equations such as turbulence models in CFD simulations or 

material-constitutive equations in FE-analysis add to the total error and uncertainty of the model. In 

addition, there will be uncertainties in boundary conditions and initial conditions. The conversion from 

continuous to discrete mathematics comes with some error. From a numerical solution point of view, 

special convergence is somewhat addressed through evaluating different mesh densities.  

The design of the Turbine Rear Structure is constrained by the interfaces to the high pressure turbine. 

The number of vanes connecting the shroud to the hub is one of the major factors in the design space. 

A large number of vanes create a strong and robust structure, whereas a small number of vanes results 

in less losses in aerodynamic energy. In other words, there is a trade-off to be made between 

aerodynamic efficiency, weight and structural integrity.   

The practice for designing the structure is to set a constraint on the structural stiffness and thermal 

strain that the structure should withstand, and see how many vanes are needed to fulfil those criteria. It 

would be beneficial to have available a preliminary screening model consisting of simplified form 

equations, but that has been elusive.  Both insufficient model accuracy of lumped parameter models 

and failure to consider manufacturing variability impact on aerodynamic performance have prevented 

that application.  Instead, the first layer of software tools is a parametric CAD-model is connected to 

thermal and structural FEA software, is used to evaluate the design with respect to structural strength 

and thermal strain. Even so, the model is not perfect as it contains both aleatory and epistemic 

uncertainties. An example of aleatory uncertainty is that variations in assembly results in a non-

nominal geometry. An example of epistemic uncertainty is the limited accuracy of the mesh used in 

the FEA simulations. The model is not perfect – instead it is estimated that the model deviates from 

reality with approximately ±5%.   

In terms of mechanical design automation, several inherent difficulties become apparent. First, there 

are several alternative architectural layouts of the vanes that can be considered, in terms of number, 

orientation, and mounting. These must be determined early, and then subsequently analysed in lengthy 

engineering studies. Due to the inherent uncertainty in those analysis outcomes, it is very difficult to 

offer preliminary calculations that can be done at the architectural phase that can correctly assess one 

architecture as superior over the others. The result is a needed to iterate – explore several alternative 

architectures in detail using the more refined layer of analysis. This is the realm of finite element 

structural analysis, CFD analysis, and exploration of alternative fixturing methods to enable welding. 

Even with the detailed numerical studies, the results remain uncertain, again making the decisions 

contingent on the actual results of the subsequent phase.  

The approach taken to resolve these uncertainties is parallel exploration of several alternatives, but this 

approach comes with a cost of that engineering work. Another approach is to incorporate adjustment 

factors into the design (Otto and Antonsson, 1993, Otto and Jacobson 2011), to allow the built 

prototype to be quickly modified into requirement compliance. In the engine example, it is relatively 

simple to change the flange size. This can be done during prototyping to bring the performance on 

target as predicted by the earlier phase simulation model analyses.  

7 CONCLUSIONS 

In summary, to enable mechanical design automation that can compute realistic and detailed design 

solutions as a chain of progressive interactive analyses and optimizations, several additional key 

design science questions include:  
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1. Given the recent history and successful one-off demonstrations in industry of software 

platform based design in mechanical systems, it remains unclear where gaps have arisen in 

practice and their root causes.  Our experiences indicate model uncertainty is one key gap.  

2. Given that any computed design configuration result is determined from physics based models 

with error, by what design flow should the hierarchical analyses be used to assess the risk and 

worthiness of refined modeling or prototyping of the computed configuration? 

3. How can key uncertainties in mechanical system design automation be computed, and test 

conditions determined for prototypes based on this computed results?  

4. Overall, how much of mechanical system and component design can be automated through a 

layered system of progressively detailed models of pre-configured mechanical components 

and their requirements (parallel libraries at various levels of abstraction)?  

These questions can be well stated as statistical hypotheses and tested under industrial R&D 

conditions. This thereby provides for very interesting research opportunities in design science.  
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