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1. Introduction 
Conceptual design of complex systems starts with generation of possible architectures, their 
exploration and eventually selection of one [Ulrich and Eppinger 2000]. This process should ideally 
start from a large set of potential solutions and then progressively be focused towards the solutions 
offering the best performances. In order to be really successful, this multi-objective optimization must 
start from a sufficiently exhaustive set of admissible solutions. However in real situations, designers 
do not have enough time and resources to envisage solutions that are really far from existing products. 
The purpose of this paper is to propose an architecture generation and exploration method that is able 
to generate automatically a large set of potential solutions, taking into account various constraints like 
the compatibility of components and minimum levels for some required performances. The originality 
of proposed approach comes from integration of information uncertainty in the expression of the 
constraints and performances. Another advantage is that our method is easy to use and intuitive: all the 
data about the design problem can be input in a single and graphical model: a Bayesian network. No 
programming at all is required. 
The sequel of this paper is organized as follows: the next section is about the motivations of our work 
and the state of the art. Since the reader may not be familiar with Bayesian networks, the following 
section is a short introduction to this mathematical model. Then we describe our method, using a bike 
example to make the general explanations more concrete. The last section gives the strengths and 
weaknesses of our method, and some perspectives.  

2. State of the art 

2.1 Product architecture definition 

In a «systems engineering» point of view, a product can be considered as a system. According to [ESD 
Committee 2004], the “system architecture is an abstract description of its entities and the 
relationships between those entities”. Ulrich [Ulrich 1995] completes this definition by adding that the 
product architecture is “the scheme by which the function of the product is allocated to physical 
components”. And more precisely: “(1) the arrangement of functional elements; (2) the mapping from 
functional elements to physical components; (3) the specification of the interfaces among interacting 
physical components”. 
In our paper, we will focus on the last two points. We provide a method to synthesize numerous 
product physical architectures. But we also want to validate some product specifications. Therefore, 
our model allows to represent and to estimate some required performances in order to be able to make 
objective choices. Choices made during this phase are crucial: certain studies (e.g. [Zablit and Zimmer 
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2001]) showed that approximately 70 % of the product relative costs are committed by the decisions 
taken during the conceptual phase of the product development. Ulrich [Ulrich 1995] assessed the 
implications of product architecture on product life-cycle, but also on the company and notably on its 
product policy and its design team’s management. 

2.2 Product architecture generation 

Despite its strategic role, few methods and tools are available to support this step [Yannou 2001]. 
Product architecture is the stage where all possible solutions are considered and evaluated to keep only 
some key architectural concepts which will be studied further in detail. With the introduction of new 
electronic technologies, products require more and more multidisciplinary approaches [Kreimeyer 
2009]. Difficulties due to the diversity and to the high number of potential technical solutions appear 
in the conceptual design decision, when designers need to combine numerous solutions and compare 
them. If product is too large or complex, they cannot handle their design problem in its wholeness. 
They have to make preliminary choices between a few first concepts that only rely on their experience 
and their knowledge. This is all the more difficult given that quantitative data, at this early stage of 
product development, are often unknown or uncertain: it is impossible to use CAD tools or simulation 
to optimize a concept. One natural solution for designers is to practise redesign [Dieter 2000]. It 
reduces risks associated to the product development but also reduces the number of opportunities to 
design a product in rupture. Computational tools are now needed to support and steer designers in their 
approach of product designing and trade-offs deciding. Few methods were developed to generate 
automatically product architectures. We can distinguish two main approaches [Antonsson and Cagan 
2001]. The first one is based either on product requirements fulfillment using black box concept and/or 
physics equations. A second stream consists in the expert knowledge elicitation under the form of 
design rules.  
The following methods are specifically designed to support designers in the generation of new 
concepts. Bryant [Bryant 2005] presents a method that generates physical concepts from a functional 
architecture directly built by designers. His method uses a set of design structure matrices (DSM) 
which represents diverse dependencies between functions and components, and then allocates to 
functions the components coming from a design repository (i.e. a database of design knowledge). This 
method generates product configurations taking into account flow and structural interactions to assure 
the feasibility of concepts. Applied on an industrial case, the main weakness of this method is that it 
may not be suited to certain domains since the predefined catalogue forces the user to adapt to the 
model and its vocabulary. This method is however very useful in a stage of intensively creative 
research where designers start from scratch. To avoid this issue, Wyatt [Wyatt et al. 2012] proposes a 
method in which designers describe the design problem: design alternatives of components and their 
relations must be specified. Design rules definition is used for generation of design alternatives. This 
method is mainly based on expert knowledge. However, it relies on a specific graph typology that does 
not allow a quick understanding of the system and that may be difficult to implement during first uses. 
Furthermore, the generated concepts are feasible but it is not guaranteed that they meet all product 
requirements since there is no estimation of product performances, which can be an issue when some 
alternatives must be chosen. To consider product performances, the method Hierarchical Subjective 
Objective System (HSOS) [Rosenstein and Reich 2011] uses a genetic algorithm: design alternatives 
and theirs relations, called building blocks, are described under the form of a “Boolean” gene to ensure 
the concept feasibility. The capability of target performances fulfillment for every building block is 
then evaluated in a qualitative way. The global performances of each complete design alternative are 
calculated with weighted linear relations. Finally, a genetic algorithm generates optimal concepts with 
regard to performances. This method is useful when no quantitative information about alternatives is 
available: the generated concepts are optimal from a qualitative point of view but the fulfillment of 
specific quantified requirements is not ensured.  Furthermore, an additional view is needed to show 
how the problem has been modeled and to provide a vision of design problem that collaborators can 
share. This should avoid missing parameters in problem definition, or personal bias in the estimation 
of some performances. Another way to reduce this bias is to use quantitative data to estimate 
performances. In preliminary design, the available data mainly come from previous designs and expert 
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knowledge. They are often fuzzy or incomplete at preliminary design stages, which make concepts 
synthesis strenuous. However, in his method, Matthews [Matthews 2011] exploits quantitative data 
coming from previous designs examples to automatically induce a design model. This model takes the 
form of a Bayesian network where parameters and characteristics are linked by a joint probability 
distribution. The Bayesian network structure and the related conditional probability tables are 
automatically created by the analysis of parameters and characteristics values of previous design 
examples. An experiment with a laboratory case proved that the automatic knowledge acquisition 
process was successful. Matthews also tried the method on an industrial case and noticed that experts 
did not feel comfortable with this probabilistic model, since they did not control the net construction, 
and had found some relations between parameters that did not make physical sense. The generated net 
could not represent a basis that allowed to improve the global understanding of the problem and thus 
to support designers’ reflection. This study emphasizes that it is necessary to provide designers with a 
tool that is adapted to their knowledge level and to their vision of design problem. 
In view of above studies, we can deduce the following requirements for product architecture 
generation: 

1. Design problem representation should be modelled and represented integrating designer’s point 
of view, 

2. It is necessary to manage uncertainty due to the lack of information, 
3. Enlarging the solution space and ensuring solution consistency is important to support the 

design team, 
4. A support for comparison of proposed architectures must be integrated. 

In this paper, we address only a part of the architecture design framework and it concerns mostly 
structural architecture. The part concerning the functional architecture is to be considered and under 
development. 

2.3 The improvements brought by our method 

In the framework of this paper, we consider that there is some missing information, and therefore 
using experts’ knowledge seems more appropriate. We propose a product architecture generation and 
exploration method for the conceptual phases based upon Bayesian networks. In order to address this 
problem, we have used software with an adequate graphical interface. It has the advantage of being 
intuitive since the model is developed with the different templates that we will define in section 4. 
With regard to problem design specification, our method allows the use of qualitative and quantitative 
data. Moreover, the uncertainty that is inherent to designer knowledge is modelled. This makes 
possible to determine a level of confidence linked to the feasibility of the generated architecture. In 
terms of results, the model allows a global estimation of architecture performances and generates only 
the solutions which respect required thresholds. Thus the designer can knowingly choose which 
architectures he will continue to develop. 
Concerning the method appropriation by designers, no notion of programming is required to 
implement the model. The generic character of Bayesian networks is a second advantage: indeed, the 
model is not based on any database or specific language. The modellers can therefore customize their 
model as they understand it, with the vocabulary which seems the most appropriate both for qualitative 
and quantitative data. The fact that designers construct their own view of problem makes them more 
confident in the proposed solutions. The graphical representation constitutes a common basis for a 
better understanding and sharing of the design problem. Moreover, if an aspect of the problem at hand 
was forgotten, or else, if new data is available, this can be added without difficulty. Also, the modeller 
can delete data which would not be relevant any more without this having an impact on the rest of the 
problem. Thus, the model evolves in conjunction with the designer's reflection. 

3. Bayesian networks 
In the context of this article, we are going to use Bayesian networks in a very peculiar way. Bayesian 
networks were originally created in order to perform Bayesian inference on probabilistic models, but 
we will be using them largely to represent a set of deterministic constraints that can be fulfilled or not 
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by various architecture designs. However, we will use also some truly probabilistic features of 
Bayesian networks. 

 
Figure 1. "Chest Clinic", a classical example in the Bayesian networks literature 

A Bayesian network can be considered as a concise representation of the joint probability distribution 
of a set of random variables (X1, X2,....Xn): it is the most complete information which one can give 
about this set of random variables. To give a global and intuitive view of dependences between 
variables, it is useful to represent the Bayesian network as a directed acyclic graph, the nodes of which 
are associated to the random variables Xi. The links pointing at one variable correspond to a 
conditional probability distribution defining how this variable depends on its parents. 
The main use of Bayesian networks is to do what is called inference: it consists in updating the 
probability distribution of unobserved variables of the Bayesian network, knowing the value of some 
observed variables. Figure 1 is a screenshot of the tool [Netica] showing the "Chest clinic" model (this 
is a famous pedagogical example in the literature on Bayesian networks). The tool has updated the 
probability distributions of all the remaining nodes, knowing that the patient has the symptom 
dyspnea, and that he does not smoke. Given this evidence, it is much more probable that the disease 
explaining the dyspnea of the patient is bronchitis, rather than tuberculosis or lung cancer.  
Inference algorithms in Bayesian networks are a complex topic, which is still a field of active research. 
In the context of the present paper, we will rely on the tool [Netica] which uses a classical algorithm 
that gives exact results, but works only for discrete variables. Because of this restriction, we will have 
to discretize continuous variables when they are needed. Further information about the use and interest 
of Bayesian network is available for example in [Jensen and Nielsen 2007]. 

4. Product architecture generation and exploration using Bayesian networks 

4.1 Introduction 

Our method encompasses two main steps. The first step is manual and consists in building a Bayesian 
network encoding all the decision variables of the design problem, the constraints existing between 
them (sometimes with uncertainty), the performances as functions of the decision variables. To make 
this work easier, we propose to use a small number of templates that we describe hereafter. The 
second step is fully automatic and consists in the generation of all the admissible solutions by a 
program based on Bayesian inference. 
To make understanding easier, we are going to illustrate our method with a bike design problem: we 
consider several types of components, compatible or not, and we want to create a bike weighing at 
most 15kg. For pedagogic reasons, we simplified the problem by considering only compatibility 
constraints. In reality, the architecture of a product might also depend on the components number, as 
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well as their relative location. Moreover, constraints could concern some components characteristics 
and could be coupled. We are currently testing this method also for a much larger complex system. 

4.2 Model building 

The Bayesian network we will build has to represent the entire design problem which is composed of: 
 Decision variables: all the choices that designers must make; 
 Characteristics: all data that are linked to decision variables and that are useful for the 

performances evaluation (e.g. brake weight is a characteristic linked to the choice of brakes 
and will be used in the estimation of the total bike weight); 

 Performances: the requirements that the future product must meet; 
 Constraints: compatibilities between the choices made for two or more decision variables. 

There are two cases:  
o Crisp constraints: it is a deterministic knowledge; 
o Uncertain constraints: designers do not have the entire knowledge to represent and to 

resolve their design problem. Hence, they can be led to make assumptions on some 
data or relations. Modelling uncertainty is going to allow us to measure the confidence 
that an architecture concept represents in feasibility terms. 

Each of the above points follows a particular template that we are going to describe in the following 
section. 

4.2.1 Templates description  

The following templates are composed of nodes and arcs, the classical representation used in Bayesian 
networks. A chance node is a node whose relations with its parents are probabilistic.  If its parent’s 
values are all known, and there is no further information, then its value can only be inferred as a 
probability distribution over possible values. On the contrary, a deterministic node is a node whose 
relationship with its parents is given as a function of the parent values. If the parent values are all 
known, its value can be determined with certainty. For both node types, the node can be Boolean, 
discrete or continuous.  An arc represents a dependency relation between two nodes. Each template is 
illustrated by an example and explained below.  

 A decision variable is represented in a chance node. A new state is added for each new 
“option” of decision. A priori, all options can be chosen. The probabilistic distribution of the 
node is therefore taken as uniform. 

 A variable characteristic must be represented in a chance node that is linked with the decision 
variable node that it describes. Two characteristic nodes can be linked together if the two 
characteristics are coupled. A numerical value can be associated to this node. This value will 
be used for the performance calculation.  In our bike example, we need to estimate the total 
weight of the bike. For instance, to represent the brake weight, we define a continuous node 
that has been discretized and we link it to the node “brake”. The corresponding probability 
table is described on Figure 2.  

 A performance is represented by the association of two nodes. The first node is defined in the 
same way as characteristic nodes. It is linked to characteristic and/or decision variable nodes. 
Its probability table can be easily filled using an equation expression involving its parent 
nodes. The second node is Boolean and defines the threshold that the product must reach. If 
performance is over the threshold, its state is “true”. If not, the state is “false”. This node will 
be used in the generation step for the selection of “good” architectures. Several performances 
can be represented in the model. To stay simple, we define only one performance in our bike 
example: the total weight. All architectures must have a weight lower than 15kg. 

 A constraint is defined with a deterministic Boolean node that is linked with the variables on 
which the constraint is applied. If the constraint is satisfied, the node state is “true”. In our 
example, we define compatibility constraints between components. For example, a dynamo 
hub is not compatible with a speed-hub: in the line of the probability table corresponding to 
this combination, the constraint state is “false”. 
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 To define an uncertain constraint node, we replace the deterministic node by a chance node. 
Thus, we can enter an error ratio for every combination of parent nodes in its probability table. 
For instance: we suppose that a shaft drive is compatible with a speed hub. But, supposing we 
have never designed a bike equipped with a shaft drive, we are not totally sure of that fact. So 
we decide to say that the probability that it is compatible is 0.9.  
All nodes with uncertainty are parents of a single node of global confidence. We consider that 
the concept feasibility is true if all the constraints are satisfied. Thus, we know the probability 
of the whole concept feasibility. 

 
Figure 2. Model templates (probabilities are given in %) 

Another type of node can be introduced. This node is an input data that is needed in the evaluation of 
performances. It can be a constant node, or a chance node, according to the type of information it 
provides. For example, in our model, we do not represent all the bike components. But the missing 
components have a weight and thus a role in the weight estimation of our bike. We need to represent 
them by a single node that represents the value of the weight of all the components we choose to not 
represent. 

4.2.2 Architecture generation 

The architecture generation is done automatically by an algorithm that uses the information input in 
the model. Only the architectures that satisfy all constraints, fulfil the defined performance threshold 
and respect the chosen confidence level will be generated. Here is a description of the algorithm: 
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forall n in constraint nodes do 
  input evidence n.state = “true” 
end forall 
N = the set of variable nodes 
C = confidence level // in [0;1] 
call generation (N,C)  

// here is the definition of the function “generation” called in the main program 
function: generation(variables, c) 
forall v in variables do 
  forall s in v.states do 
     if v.s.probability > 0 then   //select only the node states whose probability > 0 
        input evidence v.state = s 
        // bayesian inference   
        update probabilities of all nodes          
        if cardinality(variables) > 1 then 
   generation(variables-{v},c); 
        else  // termination of the recursion  
   if global_confidence_node.true.probability > c then   // the current state of the BN   
      forall v in N do   // depicts an admissible solution 
        write v.finding //finding is the state of v that has probability 1  
      end forall 
   end if 
        end if 
     end if 
   end forall 
 end forall 
 end function 

The algorithm encompasses three main steps: the first one consists in blocking all crisp constraint 
nodes on “true” in order to ensure that all combinations respect crisp constraints and performance 
thresholds. The second step consists in blocking, node after node, state after state, a decision variable 
node on a given state. Only the states whose probability is not null are examined. The exploration of 
the Bayesian network is carried out by a recursive function. Thirdly, when all decision variables are 
set, the global confidence node is examined in order to check if the confidence threshold is respected:  
the probability that all uncertain constraints are satisfied is defined in the global confidence node. It 
corresponds to the probability that the global confidence node is true. If this probability is higher than 
the required confidence level, the configuration is considered as a solution. 

4.3 Bike model 

4.3.1 Model definition 

The entire bike model is given in Figure 3. It is composed of nine decision variables comprising 
between two and four options. They are described by eight characteristic nodes on which depends a 
single performance node. Seven compatibility constraints, among which four are uncertain, will be 
applied on decision variables. The Cartesian product of the decision variables sets of states encodes 
27648 possibilities of bike architectures. 

4.3.2 Results 

The Bayesian network building took about 2 hours. In the generation step, 861 architectures were 
generated in a few seconds on a classical desktop computer with a threshold for the confidence level 
set at 80%.  
The confidence level influences the number of generated architectures: as shown in Figure 4, the 
number of acceptable architectures drops as the requested confidence level grows. This phenomenon is 
logical: in the construction of the Bayesian model, designers have introduced several confidence levels 
concerning some compatibility of components. The generation algorithm will link several components 
into a single architecture. This fact leads to aggregation of confidence levels in a single confidence 
level representing the global architecture feasibility. When uncertainty in defining the compatibility of 
components in an architecture increases, the global confidence level of this architecture decreases. 
In the table below, the compatibilities of the architecture 1 are more uncertain than ones of the 
architecture 2. As a result, the global confidence level of architecture 2 is much better than for 
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architecture 1. With a required level of confidence at 80%, the architecture 2 will be in the set of 
admissible architectures while the architecture 1 will not. If we modeled this design problem in other 
architectures generators, both architectures would be admissible solutions without any other 
distinction. Modeling uncertainty is useful to estimate the global feasibility of the architectures so that 
designers can knowingly choose an architecture concept. 

 
Figure 3. Bike model 

 
Figure 4. Number of generated architectures in function of the required confidence level 
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Table 1. Comparison of confidence levels on two architectures 
 Architecture 1 Architecture 2 

C1 
multi-speeds system external

100% 
in hub

90% 
transmission  chain belt

C2 
rear suspension extension spring

95% 
without 

100% 
frame classical_suspended beam_not_suspended 

C3 
fork suspended

100% 
not_suspended 

100% 
 frame suspended beam_not_suspended 

C4 
front suspension  pneumatic_cylinder

80% 
without 

100% 
fork suspended not_suspended 
Global confidence 76% 90% 

5. Conclusion  
In this paper we propose a product architecture generation and exploration using Bayesian networks. 
This method allows designers to define explicitly a space of possible solutions in terms of product 
architectures and to generate all the solutions which fulfill all constraints and meet the required 
performances. A first advantage of the use of Bayesian networks is that it is possible to manipulate 
deterministic data as well as probabilistic data. This method is therefore useful to model all 
performance types. The proposed method is illustrated using a bike design problem. Although this is a 
relatively small design problem, it illustrates well the advantages of the proposed approach. 
Furthermore, a larger scale design is currently experimented in order to validate the approach.  
A second strength is that implementing the method is relatively generic and quick. It can be applied 
for both physical and functional architectures. Moreover, the introduction of a confidence level on data 
allows to take into account designers knowledge, which is often imperfect, and so, to soften the model 
up to avoid over-constraining. On the other hand, solutions depend a lot on the way designers modeled 
their problem, and particularly the uncertainty estimation which is subjective. However, this weakness 
is compensated by progressive and interactive aspects of the method which allow designers to better 
consider the problem in its wholeness, and to bring corrections if needed. Another weakness appears 
when designers’ knowledge is not sufficient to compensate for the lack of information. A way to 
overcome this issue is to use data from previous design examples using an approach similar to 
Matthews’ method to construct the affected parts of the Bayesian network. The last weakness appears 
when constraints are not extremely strong. The number of generated architectures may be large and 
difficult to exploit. Therefore a coupling with multi-objective optimization methods, such as Pareto 
optimum, could help determine the most promising architectures. This is envisaged for future works, 
as well as modeling more complex problems which call a bigger diversity of data in order to validate 
the method and its templates. 
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