
12TH INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’10
22 – 23 JULY 2010, CAMBRIDGE, UK

THE IMPACT OF PACKAGING INTERDEPENDENT
CHANGE REQUESTS ON PROJECT LEAD TIME
Naveed Ahmad, David C. Wynn and John Clarkson
Engineering Design Centre, University of Cambridge

Keywords: batching change requests, project lead time, DSM, DMM

1 INTRODUCTION
In a complex product development environment with many interdependencies between concurrent
design activities, changes occurring during a project can have significant knock-on consequences in
due to the rework required. It is thus important to effectively manage change work as it arises, in order
to minimise its impact on the project schedule.
To help understand how change requests can be most effectively managed in such environments, we
explore the impact of batching change requests for concurrent execution. A simulation model is
developed which simulates the processing of changes in batches and allows estimation of the impact
of the redesign work on the overall project duration. Our model extends state-of-the art by considering
how the scope of change requests overlap, such that batching reduces not only co-ordination
overheads but also the absolute amount of work that must be done.
We show how the model can be used to help managers determine a change request batching policy
that will be suitable for a particular product development environment, and compare our findings to
other simulations in this area.

2 BACKGROUND
Engineering changes are ubiquitous in design projects and unpredictable in nature (Rowell et al.,
2009). During any given period of time a number of new change requests might be initiated (Loch and
Terwiesch, 1999), resulting in a new batch of change requests which then have to be dealt with. At
times, the unpredictable nature of change requests makes it unfeasible to execute them straightaway,
for instance due to resource unavailability. As a result subsequent changes can accumulate during a
product development project (Rowell et al., 2009; Giffin et al., 2009).
Subsequent changes may overlap, causing unnecessary rework termed here as ‘re-rework’. Re-rework
in an activity is caused by a change request followed by a new change request such that the later one
requires revisiting some of the same activities affected by the former change request. So, in order to
understand the impact of changes on the project schedule it is important to consider the possibility of
re-rework. Understanding re-rework is the focus of the present paper.
Many authors in the academic literature have studied issues that relate to this problem. For instance,
Gartner et al. show how the effect of a single change request on project schedule can be estimated by
identifying rework in the activities and consequently their impact on the project lead times (Gartner et
al., 2008). Similarly, in our related article we have estimated the impact of changes to product
requirements on the process, by identifying the rework required in the activities to execute that change
(Ahmad et al., 2010). These approaches do not directly assist with understanding the impact of
interdependent change requests on project schedules.
One way of dealing with the effects of successive changes and to minimise the effects of re-rework is
to allow the changes to accumulate, then process them in a batch. Loch and Terwiesch discussed how
the execution of changes in batches can reduce costs by allowing the setup costs to be shared. There
are two main limitations of their analysis from the point of view of analysing re-rework: firstly, they
do not consider changes in terms of rework in activities; and secondly, their method looks to batch
similar changes (where setup costs are shared) and not interdependent changes (where, in addition, re-
rework effects occur). Analyses of the impact of packaging change requests on project schedules can
be found in software process dynamics literature as well. For example, mirroring the sharing of setup

293

costs in engineering tasks, Kilpinen discusses how packaging can save software testing time if similar
changes are made together, as all testing will only have to be done once (Kilpinen, 2008). But, in
literature we have found no specific methods which look at packaging interdependent change requests.
This paper explores the impact of packaging interdependent change requests at different time intervals,
and estimates the impact of varying the time interval on project delivery dates. In particular, our
method simulates the combined affect of all changes, accumulated in an interval (see Figure 1),
executed at the same time on the project schedule. This can help the project manager in determining a
change management policy by answering questions like: Should changes be managed collectively at
regular intervals? And this will also help to eliminate the unnecessary rework that can be saved when
packaging interdependent changes at the detailed design process level.

3 RESEARCH QUESTIONS
This paper aims to answer the following research questions.
1. What is the effect of changes occurring during development on the project lead time?
2. How is the rework added to activities affected if changes are processed in batches at intervals?
3. What should be the time interval between batch processing of changes?
These questions are explored through a simulation model discussed in the following section, and
applied to a case study as described in Section 5.

4 SIMULATION MODEL
The model introduced in this section simulates the execution of changes occurring during the design at
regular intervals to see the affect of varying intervals on the process lead time. Our simulation
approach is based on the assumption that the change managers does not know the best interval to
package change requests, so we try different size intervals to determine a change policy. Figure 1 and
Figure 2 outline our method, which is described in greater detail below.

Simulating normal project execution in the absence of change
The simulation algorithm was developed to use a model of a process specified as an activity DSM, in
which the duration of each task is specified. It is based on transitions between discrete process states,
as explained below.
Representation of the process state: During simulation, each activity in the detailed design process
has one of three possible states: pending, completed or executing:

1. Pending: All the activities that are not yet executed reside in the pending queue.
2. Executing: Once an activity starts it is moved from the pending queue to the executing queue.
3. Completed: The activities that are already completed reside in the completed queue.

Algorithm: The ‘normal execution’ simulation algorithm (ie the project simulated in the absence of
any changes) consists of the following steps:

1. Initialization: At the time ‘0’ all the activities are placed in the pending queue. The activities
in this queue are prioritized based on their respective start times. This will ensure the correct
order of execution of the activities. The change review interval after which all the pending
change requests are processed is also initialized to a value at the start of the simulation.

2. Normal execution: All the tasks in the execution queue and pending queue are updated as
follows. The work done for each activity in the execution queue is updated as a discrete event
and in case there is no further work left it is moved to the completed queue. The pending
queue is then checked for the activities which are ready for execution due to completion of
predecessors. All the activities whose start time matches the current time are moved to the
executing queue.

Step 2 is repeated until all the tasks are executed. At change processing intervals, the merging of
changes into the workflow is simulated using the algorithm described below.

294

Normal execution # Name Duration Process DSM
1 2 3 4 5 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Acquire prefabricated items
Testing of other items
Testing of microcontroller (MC)
Testing of the LCD
Testing of the power supply
Testing of the clock
Writing software
Acquire PCB
Replacing wires in power supply
Final testing of power supply
Acquire casing
Testing the software
Loading software in MC
Final test of MC
Assemble devices on PCB
Final testing of the circuit
Input and output sockets

2
1
2
2
2
1
11
3
2
3
4
4
1
4
2
4
1

 �
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

�
�
�
�
�
�
-
-
-
-
-
-
-
-
-
-
-

�
�
�
�
�
�
-
-
-
-
-
-
-
-
-
-
-

�
�
�
�
�
�
�
�
�
-
-
-
-
-
-
-
-

�
�
�
�
�
�
�
�
�
-
-
-
-
-
-
-
-

�
�
�
�
�
�
�
�
�
�
-
-
-
-
-
-
-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

x
x
x
x
x

x
x x x x x

x
x

x
x

x
x

xx
x

xx x

Figure 1. Simulation during normal execution (where activity status is pending (-), executing (�), completed (�))

Simulating the impact of batch processing of change(s) on normal project execution
The steps taken to initiate, evaluate and simulate changes in the project execution are:
Initiation of change requests (‘1’ in Figure 2): As discussed earlier change requests are assumed to
arrive randomly during a product development project and accumulate over time. To emulate the
initiation of change requests in our simulation model the distribution shown in Figure 2(1) is used.
Evaluation of change requests (‘2’ in Figure 2): Each change is evaluated in three steps: 1) identify
the components affected; 2) identify the activities requiring rework as a result of change in
components; and 3) identify the indirectly affected activities.

1. Identify the affected components: The product is modelled as a DSM of components where
each connection between two components had a likelihood value and an impact value which
gives the probability of change propagation from a component to all other components, and
the impact of that change respectively. This product DSM is used as input to the CPM method
to identify the risk of change propagation to other components of the product (Clarkson et. al,
2004). The output of the CPM method is a risk matrix which gives the risk of change
propagation from one component to the all the other components. The components with the
high value of risk are selected as ones that may be affected by a particular change.

2. Identify the directly affected activities: The mapping of product components to detailed design
process activities is used to identify the list of activities that will be affected by change in the
components. Gartner et al. also used a product-to-process DMM to identify the rework in
activities (Gartner et al., 2008). This product-to-process DMM can identify the direct rework
in the design activities as a result of changes in the components. Rework in each activity is
decided based on its current state of completion as explained further in the following sections.

3. Identify the indirectly affected activities: In case of a design process if there is a change in an
activity then all the downstream activities are prone to change. All the directly affected tasks
are identified using a component-activity DMM in Step-1. In step-2 all the knock-on rework in
the detailed design process is identified using the activity DSM. When dealing with the
activities in the detailed design process, work always flows from an activity to its downstream
activities, apart from iterations. It is important to supply the activities in their original order of
execution so that the activities that are executed first in the original execution of design
process will be reworked first, as this will ensure that no unnecessary rework occurs.

 Our simulation model also follows this assumption, so the activities identified in step 1 along
with all the downstream activities are labelled as ‘rework activities’. Figure 2(2) illustrates
how for each change case a list of activities requiring rework is generated.

Simulate the ‘change in project execution status’ following a change processing interval (‘3’ in
Figure 2): The interval to process pending change requests and a buffer containing all the change
requests are input to our simulation method at the change processing interval. At each time interval all
the change requests in the buffer are executed at once and the project schedule is updated accordingly.

295

1 2 3 4 5 6 6 7 8 …
�
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

�
�
�
�
�
�
-
-
-
-
-
-
-
-
-
-
-

�
�
�
�
�
�
-
-
-
-
-
-
-
-
-
-
-

�
�
�
�
�
�
�
�
�
-
-
-
-
-
-
-
-

�
�
�
�
�
�
�
�
�
-
-
-
-
-
-
-
-

�
�
�
�
�
�
�
�
�
�
-
-
-
-
-
-
-

St
at

us
 o

f a
ct

iv
iti

es
 sh

ow
n

at
 ‘6

’ (
le

ft)
 is

 if

th
er

e
w

er
e

no
 c

ha
ng

es
 b

ut
 d

ue
 to

 c
ha

ng
e

pr
oc

es
si

ng
 in

te
rv

al
 a

t ‘
5’

 th
e

st
at

us
 o

f
ac

tiv
iti

es
 a

t ‘
6’

 is
 sh

ow
n.

�
�
�
�
�
�
-
-
-
-
-
-
-
-
-
-
-

�
�
�
�
�
�
-
-
-
-
-
-
-
-
-
-
-

�
�
�
�
�
�
�
�
�
-
-
-
-
-
-
-
-

…

lik
el

ih
oo

d
of

 c
ha

ng
e

re
qu

es
t

Product
DSM

List of affected
components

Change buffer

Project lead time

Calculate knock-
on changes in
other components

Calculate
rework in
downstream
activities C1 C2

Project elapsed time

Add rework to the
affected activities
based on their
current state

5 10

Rework in activities due to C1 and
C2 at first change interval

11 22

33

x x x

Product-
to-

Process
DMM

Process
DSM

x

x

x

+ =

x

x
x

x

x
x
x

x

x

x

x
x
x

x

x

x
x

x

x
x
x

x

x

List of
activities
requiring
rework for
this change

‘C1’
x

x
x
x
x

x
x
x

Figure 2. Simulation model (showing steps taken when processing changes at each change interval)

Execution at the change processing interval: We have assumed that processing interdependent
changes in intervals can save extra rework, so the interval for processing batch of changes can be fixed
at the start of the simulation. All the changes that are queued up to this point are processed after each
of these fixed intervals. All the activities requiring rework from the current batch of changes, as
identified in Step-2, are checked and the following steps are taken based on their current status.

1. If an activity is in the pending queue then no rework is required, because it is already waiting
for execution.

2. In case an activity is currently in execution, the rework is decided based on the current state of
the activity – specified as a function of the total time required by the activity to complete and
of the work left in the activity. In general, an activity's rework behaviour can be defined by a
case-specific curve as shown in Figure 3 (left) (Carrascosa et al., 1998). In Carrascosa’s model
each activity has its own curve. For simplicity we have used the function on Figure 3 (right)
for every activity in our model. It gives an approximate measure of how much rework is
required based on the work left in the activity, so if an activity has more work left then the
additional time required will be less and vice versa. For instance, if an activity has 90% work
left then the additional rework added to it will be 10%.

296

R
at

e
of

 u
se

 o
f i

nf
or

m
at

io
n

Elapsed time

R
at

e
of

 u
se

 o
f i

nf
or

m
at

io
n

Elapsed time

Rework = (total work – work left) / total work

Figure 3: ‘Rate of information use’ by an activity as a fraction of its elapsed time

3. In case change requires rework of a completed activity, all the activities currently in execution
are interrupted and moved to the pending queue. The completed activity requiring rework is
moved again to the execution queue and it is assumed that whole activity will require rework.
This assumption is also supported by Krishnan et al. in their simulation (Krishnan et al.,
1997). In case the activities interrupted are not one of the other activities affected, then they
are also moved back to the execution queue. All the interrupted activities when added to the
queue require additional times due to switching queues termed as ‘penalty’.

Results: At each change processing interval some amount of rework is added to the affected activities
based on their current state. The affect of this rework on the overall project schedule is calculated and
the schedule is adjusted accordingly to reflect the delay on total project completion time. Simulation
then proceeds according to the algorithm explained at the start of Section 4, until the next change
processing interval.

5 EXPERIMENT
The simulation model was applied to a microcontroller based device AUTOBELL, a product of Digital
Research Labs (DRL). The first author conducted a case study to construct the model consisting of the
product DSM, the activity DSM and a product-to-process DMM where each component is connected
to at least one activity in the detailed design process.
13,000 simulations were run using the AUTOBELL model. For each change processing interval the
simulation was executed 1000 times. During each simulation 20 different change requests are initiated
at random times. In our simulation model the occurrence of changes is random, depicting any real life
product development scenario where a change can occur at any time. As described above, all the
changes occurring during an interval are stored in a buffer until the specified time is elapsed, then all
the batched changes are executed at once and their affect is translated on the project schedule.

The resulting process durations, shown in Figure 4, give the average delay in project completion from
the baseline case where no changes are initiated. Figure 4 shows the need to appropriately choose the
time interval between processing batches of change requests. On both the extreme left and extreme
right ends of the plot, the delay in project completion increases - showing that it is inefficient to
process changes as soon as they arrive, but also inefficient to wait too long for batch processing of
change requests.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12

Change review interval

A
ve

ra
ge

 d
el

ay
 in

 p
ro

je
ct

 c
om

pl
et

io
n

Figure 4: Plot of average delay in project lead time for different intervals

297

6 DISCUSSION AND CONCLUSION
The simulation approach discussed in this paper explored the affect of batch processing of changes at
different change processing intervals on the project lead time. The results of the experiment highlight
the importance of choosing an appropriate change processing interval.
The following conclusions can be drawn from the results of the experiment:

1. Changes occurring during the development cause delay in the project lead time, and change
management policies can be chosen to mitigate their impact.

2. The result of the simulations shows that if the appropriate interval is chosen then unnecessary
rework in activities can be avoided. This is because when changes are held and processed
together, this saves revisiting the same activities several times (i.e. reduces re-rework).

3. The appropriate interval depends on the structure of a particular project. In case of the project
modelled in this paper, the appropriate change processing interval is 3 days as shown in Figure
4 – but this will vary for a project with different activity duration and dependency structure.

In future, we plan to further develop the simulation model presented here to incorporate other factors
influencing the execution of changes – perhaps most importantly, the availability of resources to
execute change requests. Moreover, we suggest that trade-offs between factors like time and cost
could help to get a better estimation of the change processing interval. The simulations also indicate
the number of times an activity was reworked and the amount of rework in different activities. This
data can be further analysed to adjust the product architecture in order to avoid this repeated rework.

REFERENCES
Ahmad, N., Wynn, D.C. and Clarkson, P.J. (2010). Development and Evaluation of a Tool to Estimate

the Impact of Design Change, International Design Conference – Design 2010, Dubrovnik,
Croatia, May 2010.

Carrascosa, M., Eppinger, S.D., and Whitney, D.E. (1998). Using the Design Structure Matrix to
Estimate Product Development Time, In Proceedings of DETC’98 1998 ASME Design
Engineering Technical Conferences, Atlanta, Georgia, USA, September 1998.

Giffin M., de Weck O., Bounova G., Keller R., Eckert C., and Clarkson P.J. (2009). Change
Propagation Analysis in Complex Technical Systems, Journal of Mechanical Design, 131(8),
081001.

Gärtner, T., Rohleder, M., and Schlick, C.M. (2008). Simulation of Product Change Effects on the
Duration of Development Processes based on the DSM, In 10th International DSM Conference,
Stockholm, Sweden, November 2008, pp. 199-201.

Eckert, C.M., Clarkson, P.J., and Zanker, W. (2001). Aspects of a Better Understanding of Changes,
In International Conference on Engineering Design, ICED ’01, Vol. 1, Glasgow, August 2001.
Bury St Edmunds: Professional Engineering Publishing.

Kilpinen, M.S. (2008). The Emergence of Change at the Systems Engineering and Software Design
Interface: An Investigation of Impact Analysis, PhD Thesis, University of Cambridge, United
Kingdom.

Krishnan, V., Eppinger, S.D., and Whitney, D.E. (1997). A Model-Based Framework to Overlap
Product Development Activities, Management Science, 43(4), 437-451.

Loch, C. H. & Terwiesch C. (1999). Accelerating the Process of Engineering Change Orders: Capacity
and Congestion Effects, Journal of Production and Innovation Management, 16, 145-159.

Rowell, W.F., Duffy, A.H.B, Boyle, I.M., and Masson, N. (2009). The Nature of Engineering Change
in a Complex Product Development Cycle, In 7th Annual Conference on Systems Engineering
Research 2009 (CSER 2009), Loughborough, UK, April 2009.

Wynn, D.C., Caldwell, N.H.M., and Clarkson, P.J. (2010). Can Change Prediction Help Prioritise
Redesign Work in Future Engineering Systems? International Design Conference – Design
2010, Dubrovnik, Croatia, May 2010.

Contact: Naveed Ahmad
Engineering Design Center (EDC), Department of Engineering
Trumpington Street, CB2 1PZ, Cambridge, United Kingdom
e-mail: na315@cam.ac.uk

298

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

The Impact of Packaging Interdependent Change
Requests on Project Lead Time

Naveed Ahmad
David C WynnDavid C. Wynn

John P. Clarkson

University of CambridgeUniversity of Cambridge

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

IndexIndex

• Problem
• Solution• Solution
• Research questions
• Simulation approach

– Variables
– Simulation during normal execution
– Simulation during change processing interval

• Results
• Discussion
• Future workFuture work
• Conclusion

12th International DSM Conference 2010- 2

299

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

ProblemProblem

• Complex product development environment with many interdependencies
between concurrent activitiesbetween concurrent activities

• Consequences of changes in terms of knock-on rework
• Change accumulation

ha
ng

es
 Changes during each interval

N
um

be
r o

f c
h

Project completion time
0

Interval 1
Interval 2

Interval 3

12th International DSM Conference 2010- 3

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

SolutionSolution

Packaging change requests…

12th International DSM Conference 2010- 4

300

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Research QuestionsResearch Questions

• What is the affect of changes occurring during development on the project
lead time?lead time?

• How is rework added to the activities affected if changes are processed in
batches at intervals?

• What should be the length of interval for batch processing of changes?• What should be the length of interval for batch processing of changes?

12th International DSM Conference 2010- 5

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Simulation VariablesSimulation Variables
Constants that specify product/process system being simulated

change_interval Time between change processing actions.

Product/process model Dependencies between subsystems in the product; information flows in the process;
dependencies between activities and subsystems they consider/affect; sequence of
activities.

time_step Timestep for the simulation.

Variables associated with process, that change during simulation

current_time At the start of simulation current time is initialized to ‘0’. At each step it is incremented by
time_step.

Pending queue All the activities that are not yet executed always reside in the pending queue This is sortedPending queue All the activities that are not yet executed always reside in the pending queue. This is sorted
in order of increasing start time.

Executing queue Once an activity starts it is moved from the pending queue to the executing queue. This is
sorted in order of increasing end time.

Completed queue The activities that are already completed reside in the completed queue.

change_time Next time at which changes will be processed.

change_buffer All the change requests are stored here until change_time is reached.

Variables associated with every activity in the process, whose values change during simulation

start_time Start time of the activity is specified during initialization.

total_work Total work is amount of the work to be done by in an activity.

12th International DSM Conference 2010- 6

work_remaining Work remaining is the amount of work that is to be done in an activity. This is initialized to
total_work.

301

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Simulation during normal executionSimulation during normal execution

• The algorithm operates as follows (detailed in Listing 1):
– Initialization– Initialization
– Update all activities in the execution queue
– Check the pending queue if an activity is read to start

Check if its time to for change processing interval– Check if its time to for change processing interval
– Run this algorithm until all the activities are finished

1 Set current time=‘0’; change time = change interval; 1. Set current_time 0 ; change_time change_ interval;
Place all activities in pending queue.

2. FOR-EACH activity i in executing queue:
a. work_remaining[i] = work_remaining[i] – timestep
b. IF work_remaining[i]<=0

remove activity i from executing queue and placeremove activity i from executing queue and place
in completed queue.

3. FOR-EACH activity i in pending queue:
a. IF start_time[i] <= current_time

remove activity i from pending queue and place it
in execution queuein execution queue.

4. IF current_time >= change_ time
a. EXECUTE CHANGES [described listing 2]
b. change_time = change_time + change_interval

5. IF there are activities in executing queue or pending queue.
a current time = current time+ timestep

12th International DSM Conference 2010- 7

a. current_ time = current_time+ timestep
b. GOTO 2.

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Simulation during normal execution (cont)Simulation during normal execution (cont…)

• Normal execution… where activity status is pending (-), executing (�),
completed (�)completed ()

Normal execution # Name Duration Process DSM
1 2 3 4 5 6

1
2

Acquire prefabricated items
i f h i

2
1

 � � � � � � 1
2
3
4
5
6
7

Testing of other items
Testing of microcontroller (MC)
Testing of the LCD
Testing of the power supply
Testing of the clock
Writing software

1
2
2
2
1
11

-
-
-
-
-
-

�
�
�
�
�
-

�
�
�
�
�
-

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

2
3
4
5
6
7

x
x
x
x
x

x
8
9
10
11
12
13

Acquire PCB
Replacing wires in power supply
Final testing of power supply
Acquire casing
Testing the software
Loading software in MC

3
2
3
4
4
1

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

�
�
-
-
-
-

�
�
-
-
-
-

�
�
�
-
-
-

8
9
10
11
12
13
14

x x x x x
x

x
x

x
x

14
15
16
17

g
Final test of MC
Assemble devices on PCB
Final testing of the circuit
Input and output sockets

4
2
4
1

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

14
15
16
17

x
xx

x
x x x

12th International DSM Conference 2010- 8

302

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Simulation during change processing intervalSimulation during change processing interval

ch
an

ge
 re

qu
es

t 11 22

x

lik
el

ih
oo

d
of

 c

Product
DSM

List of affected

Project lead time

Calculate knock-
on changes in
other components

components
Change buffer

33

x x x

Product-
x

List of
activities
requiring
rework for
this change

‘C1’
x

Calculate
rework in
downstream
activities C1 C2

Project elapsed time5 10

Product
to-

Process
DMM

Process
DSM

x x
x
x
x

x
x
x

1 2 3 4 5 6 6 7 8 …
�
-
-
-

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
� 6’

 (l
ef

t)
is

 if

e
to

 c
ha

ng
e

e
st

at
us

 o
f

w
n.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Project elapsed time5 10

Rework in activities due to C1 and
C2 at first change interval

-
-
-
-
-
-
-
-
-

�
�
-
-
-
-
-
-
-

�
�
-
-
-
-
-
-
-

�
�
�
�
�
-
-
-
-

�
�
�
�
�
-
-
-
-

�
�
�
�
�
�
-
-
- of

 a
ct

iv
iti

es
 sh

ow
n

at
 ‘6

w
er

e
no

 c
ha

ng
es

 b
ut

 d
ue

es
si

ng
 in

te
rv

al
 a

t ‘
5’

 th
e

ac
tiv

iti
es

 a
t ‘

6’
 is

 sh
ow �

�
-
-
-
-
-
-
-

�
�
-
-
-
-
-
-
-

�
�
�
�
�
-
-
-
-

…
Add rework to the
affected activities
based on their
current state

+ =

x

x
x

x
x

x

x

x

x

x
x

x
x

x

12th International DSM Conference 2010- 9

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

St
at

us

th
er

e
w

pr
oc

e -
-
-
-

-
-
-
-

-
-
-
-

x
x
x

x
x
x

x
x
x

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Simulation during change processing interval (cont)Simulation during change processing interval (cont…)

• Change initiation
In our simulation model the occurrence of changes is random– In our simulation model the occurrence of changes is random,
depicting any real life product development scenario where a change

can occur at any time.

� �
T
CTT

questChangeobability
�

�RePr

where T - project completion time; CT – current time

Evaluation of change requests Step 1• Evaluation of change requests – Step 1
– Identify the affected components: It includes using the Change

Prediction Method to identify change propagation in other
t f th d tcomponents of the product

12th International DSM Conference 2010- 10

303

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Simulation during change processing interval (cont)Simulation during change processing interval (cont…)

• Evaluation of change requests – Step 2
– Identify the directly affected activities: Product-to-process DMM used to– Identify the directly affected activities: Product-to-process DMM used to

identify directly affected activities

Marks show linkages
b/w subsystemsem

s

y

Marks show information
flows in process

m
S

ub
sy

st
e

be
tw

ee
n

th
e m

Marks show which
activities contribute to
which subsystems

m
at

io
n

flo
w

s
b

es
 a

nd
 in

fo
r m

12th International DSM Conference 2010- 11

A
ct

iv
iti

e

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Simulation during change processing interval (cont)Simulation during change processing interval (cont…)

• Evaluation of change requests – Step 3
– Identify the indirectly affected activities: All the successors of the activities– Identify the indirectly affected activities: All the successors of the activities

identified in step 2.
• Execution at change processing interval

– If an activity is in the pending queue then no rework is required because it is– If an activity is in the pending queue then no rework is required, because it is
already waiting for execution

– In case an activity is currently in execution than the rework is decided based
on the current state of the activity and it is a function of total time required by y q y
the activity to complete and work left in the activity

WRTW
work

�
�Re

where TW – total_work; WR – work_remaining

TW

– In case change requires rework of a completed activity then all the activities
currently in execution are interrupted and moved to the pending queue. The
completed activity requiring rework is moved again to the execution queue
and it is assumed that whole activity will require rework

12th International DSM Conference 2010- 12

and it is assumed that whole activity will require rework

304

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Simulation during change processing interval (cont)Simulation during change processing interval (cont…)

• Execution at change processing interval algorithm
1 S h h h l1. Set change_time = change_time + change_ interval;
2. FOR-EACH activity i in the change_buffer:

a. IF activity i is in executing queue
rework = total_work – work_remaining /

total work;

total_work;
work_remaining[i] = work_remaining[i] +
 rework;
FOR-EACH activity j successor of i:
 start_time[j] = start_time[j] + rework;

b ELSE IF l db. ELSE IF activity i is in completed queue
work_remaining[i] = total_work[i];
FOR-EACH activity j in executing queue
 remove activity j from executing queue and

place in pending queue.place in pending queue.
 work_remaining[j] =work_remaining[j] +

 penality;
 IF activity[j] is not a successor of activity [i]
 Remove it from pending and place it

b k i iback in executing queue
 FOR-EACH activity k in pending queue
 IF k is a successor of j

start_time[k] = start_time[k]
+ work remaining[j];

12th International DSM Conference 2010- 13

 work_remaining[j];
c. ELSE //means activity i is still pending
 GOTO 2.

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Simulation experimentSimulation experiment

• 13000 simulations for different size change intervals
• For each change processing interval the simulation is run 1000 timesg p g
• During each simulation 20 different change requests are initiated at

random times
• The plot below shows a trade-off when choosing the size of the interval

60

70

et
io

n

30

40

50

60

y
in

 p
ro

je
ct

 c
om

pl

0

10

20

1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 d
el

a y

Change review interval

12th International DSM Conference 2010- 14

305

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

ConclusionConclusion

• Changes occurring during the development cause delay in the project
lead time and change management policies can be made to mitigate
th i i ttheir impact.

• The result of the simulations show that if the appropriate interval is
chosen then unnecessary rework in activities can be avoided because
changes are held and processed together so saving multiple changes g p g g p g
possibly in same activities.

• Processing multiple changes request in batches can be beneficial but
choosing the appropriate interval depends on a particular project
schedule In case of the project schedule used in this paper theschedule. In case of the project schedule used in this paper the
appropriate change processing interval is 3 days but this will vary for a
project with different activity duration and overall lead time.

12th International DSM Conference 2010- 15

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Future workFuture work

• The simulation model will be further developed:
– To incorporate other factors influencing the execution of changes such as– To incorporate other factors influencing the execution of changes such as

availability of resources
– To include trade-offs between time / cost to get a better estimate of change

processing interval.p g
• To analyse the data from simulations such as; which activities are

changed more often or amount of rework in activities

12th International DSM Conference 2010- 16

306

