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1. Introduction 
Design is an engineering activity for creating new and innovative structures and shapes. Finding a new 
shape and style for an object can be seen as a profound human and sometimes artistic refinement 
process. Indeed, starting from an initial idea, the style designers continuously refine it through 
multiple sketches and drawings using their intuition and perception of their own production in a 
reflexive manner. Is it possible to help such style designers in their refinement process? Such an aiding 
tool should help him or her to explore more easily and systematically a large space of possible styles 
or shapes, and also to converge towards an ideal shape the designers could have more or less 
represented in their mind.  
In the field of implementing this creative design process, Evolutionary Computation (EC) has become 
one of the primary approaches. A method in EC uses basically genetic algorithms (GA) [Bentley et al; 
Renner et al 2003], which were originally used to find solutions for complex optimisation problems. 
Taking the evolution in nature as paradigm, the GAs work on the basis of a population of individuals, 
where each individual represents a possible solution for the initial problem. The structure and the 
qualities of each individual are encoded in their genomes. Through recombination of these genomes 
the individuals can reproduce themselves and produce new individuals (solutions), while by a sort of 
natural selection the individuals who are not adapted to the environment (what is expected of their 
properties) are not selected for procreation. In this way, the individuals display better and better 
qualities over the generations. Interactive Genetic Algorithms (IGA, see [Kim et al 2000; Yanagisawa 
et al 2005]) represent a special class of GAs where a human (here, the style designer) is a key player 
embedded within the task of selection of individuals of a generation. IGAs are then particularly 
adapted to situations where it is impossible to explicitely express a preference function (the fitness 
function) on individuals or even when it is hard to qualify expected properties. This is typically the 
case with style designers. 
A major difficulty when using GAs in automatic design systems is the encoding of the genome (see 
[Nicaise et al 2007]), which means the way of coding the phenotype (physical structure) of the 
individual into the genotype (genome). Most systems use a direct encoding where geometrical 
dimensions and structures of the design object are directly represented in the genome. When designing 
a bottle for example [Ang et al 2006] or finding a design for cylinder shapes [Yanagisawa et al 2005] 
the phenotype is represented in the genome by a sequence of geometrical parameters like radii, lengths 
and part locations. Consequently, the encoding is context dependent. Other works use tree structures 
[Liu et al 2002] or shape grammars [Osborn et al 2006] to encode the genome. Kim and Cho [Kim et 
al 2000] have used a set of predefined parts of clothes to find new designs in fashion by recombining 
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these parts. As the combinatorial dimension of the space of possible solutions is limited, the utility of 
such an automated exploration is questionable. 
In addition, all these systems are conceived for a given design domain. Implementing these methods in 
new fields of design is a difficult and time consuming process. However, a good design method should 
be applicable, as much as possible, on a large spectrum of situations. 
In this paper, we first propose a method of encoding a 2D-closed-curve which is supposed to meet a 
desired style. This method can be applied to all possible objects represented by their 2D-silhouettes. 
For instance a car silhouette or profile is a primordial style feature of a car since it has been proved 
that the aesthetic aspects of a car amounts for 70% of purchase intents for customers [Cheutet 2007] 
and the car silhouette in itself has been proved to have a strong determining influence on the car 
perception while embedding perceptual attributes such as: sportiveness, aggressivity or peacefulness, 
etc [Cheutet 2007]. Next, an Interactive GA (IGA) has been developed in defining a crossing-over 
operation between genes. The interactivity consists in letting a style designer qualitatively assessing 
individuals at each generation. In this manner, new innovative designs are expected to emerge by a 
balanced collaboration between an automatic process of design space exploration and the interaction 
of a designer. Finally, we provide measures for proving that innovation and surprise may emerge from 
this process. Indeed, we show that the initial population of individuals contains a sufficient richness of 
genes so as to be able to quickly converge towards a desired silhouette which is not an individual of 
this initial population. 
The paper explains the principles of the Fourier decomposition of a closed curve and the encoding 
principle in section 2. Section 3 presents the process of the interactive genetic algorithm with the 
different operations required for generating an initial population and the principle of the crossover 
operator for combining the genomes. In section 3, a test of convergence toward a reference silhouette 
is carried out to show that it is possible to quickly converge toward a silhouette which was not present 
within the initial population. This test is based on a similarity index which is also presented before 
concluding on some forthcoming perspectives. 

2. The genome 
Usual methods for coding the phenotype of an object (i.e., its structure) are to parameterise the major 
dimensions of several parts of it [Ang et al 2006; Yanagisawa et al 2005], like its total length, the 
position of the tires and their radii for a car, for example. Another method is to use shape grammars 
[Osborn et al 2006].  
Concerning the encoding of a 2D-closed-curve, McGarva [McGarva et al 1993] has proposed its 
development into a Fourier series as a method for coding its phenotype. We have personally already 
used this theory in [Vasiliu et al 2001] for encoding a 2D-closed-curves into the five first Fourier 
harmonics of this decomposition. In that way, we have been able to build an Artificial Neural Network 
for synthesizing four-bar linkage mechanisms following targeted trajectories. This approach is not as 
rigid as the approach of parameterisation for multiple reasons: 

• this encoding  is supposed to embrace a much vaster space of possible 2D-closed-curves – or 
2D-silhouettes – than by a parameterisation approach; 

• all kind of shapes may be represented even with small details, that can be of the highest 
importance for provoking feelings and emotions; 

• the encoding may be performed through a constant length of genome, which simplifies a lot 
crucial GA stages such as the cross-over operation between parent individuals; 

• finally, the genes in our solution have proved to be narrowly associated to apparent 
characteristics which is primordial to converge after several generations to the ideal 2D 
shapes. 

 
The Mac Garva’s theory of Fourier decomposition of a closed curve considers that the position of each 
point belonging to this curve can be expressed by a complex function in the complex plane: 
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 (1) 

As z(t) is a closed curve, its function is periodic. The period is normalised with: z(t+1) = z(t). This 
function z(t) can be developed into a Fourier series: 

 (2) 

where the complex Fourier coefficients can be calculated by this formula: 

 (3) 

Coefficient a0 is called fundamental, a1 and a-1 represent the first harmonic, a2 and a-2 the second 
harmonic, etc. 
As we will see later, the function z(t) is not known as an explicit function from the beginning. Instead, 
we assume that the curve has been initially defined by a set of successive points zk (k=0,..,N) which 
belong to the curve. So, in order to calculate the am coefficients (3) we need a numeric approximation. 
We obtain this approximation by dividing the curve into N segments connecting each point with its 
successor. We call tk the length of the curve between the first point z0 and the point zk. Under these 
conditions the integral can be calculated by the trapezium formula: 

 (4) 

while z is a periodic function, (zN+1 = z0). 
The value of tk is the ratio of the length of the curve to the point k and the total length of the curve. 

  ,   and   (5)   

where the total length L is the sum of the lengths of all segments, Lk is length from the origin to the 
current point, xN+1 = x0 and yN+1 = y0. 
To construct the genome of an object, we develop its silhouette into a Fourier series and define the 
fundamental (the coefficient a0) as gene number zero . The first harmonic (a1, a-1) will be called the 
first gene, the second harmonic the second gene, etc. 
 
On the basis of the genome, the original shape of the individual can be reconstructed. Every point Pk 
with the coordinates (xk, yk) on the curve z* which approximates the silhouette of the car, can be 
calculated by formula (6). 

 (6) 

where tk (0≤tk≤1) is the position on the curve and p fixes the number of harmonics used for the 
decoding. When p equals 1 for example, we use one harmonic to reconstruct the silhouette of the car. 
The more harmonics used for the decoding the more precise will be the approximation to the original 
curve (as seen in figure 1). We call p the “precision” of decoding. 
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Figure 1. Decoding of a genome of a Smart car with different precisions 

 
It can be easily proved that the first harmonic (the sole complex coefficient a0) represents the 
coordinates of the centre of gravity of the curve in a complex plane. The second gene (a1 and a-1) 
contains the information defining an ellipse. The influence of the other genes cannot be illustrated 
easily. But we can say that the first genes influence the very basic structure and shape of the silhouette 
while the higher genes bring in the details of the shape. 

3. The process of the interactive genetic algorithm 
The process of finding new design solutions can be divided into two phases (see Figure 2). During 
Phase 1 an initial population of individuals is created. Phase 2 consists of a loop where the user 
evaluates the current population and a genetic algorithm evolves the population respecting the 
evaluation of the user.  

 
Figure 2. Diagrammatic plan of the IGA process 
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3.1 Phase 1: Creating an initial population 
The genetic algorithm needs an initial population of individuals and their genetic code to start 
working. This initial population consists of silhouettes of 30 already existing car bodies. In order to 
easily sketch these silhouettes we programmed an interface in Java which allows to draw curves on a 
plain and code them into a genome. To border a silhouette we display the image of an existing car in 
the background of the screen and draw a contour-chart around the car on the image by clicking on the 
screen. The result is a closed curve representing the silhouette of an existing car-body (see figure 3). 
During bordering, a sufficient amount of points should be used to represent as many details as 
possible. When using a number M of 60 to 80 points per silhouette the result is satisfactory. 

 
Figure 3. After bordering we obtain a closed curve representing the car silhouette of an existing 

car 
 
However this amount M of 60 to 80 points is not sufficient to calculate a genome which is precise 
enough to allow a highly detailed decoding into the phenotype. Consequently we need to augment the 
number of points on the curve by smooth interpolations. The curve produced by interpolation should 
be very close to the original curve and should be continuously derivable in each point. If the curve is 
not continuously derivable, the decoding from the genotype into the phenotype produces high-
frequency oscillations and is therefore useless. We chose to solve this problem with bicubic splines 
linking three successive points (see figure 4), because this method provides a curve which is very 
close to the original curve without producing oscillations (as it is the case when using polynomial 
interpolations like Lagrange’s interpolation formula). Within each spline, a given number of points are 
interpolated, leading to a total number of N points with N>M. 

 
Figure 4. The tangent of the spline at point i is parallel to the line passing by points i-1 and i+1 

Taking care of the quality of the encoding amounts to find a satisfactory balance between the number 
N of points on the curve used for coding and the number p of harmonics used when decoding the 
genome into a curve. The number p of harmonics used for decoding has an influence on the production 
of details. The more harmonics used for the decoding the more precise will be the approximation to 



WORKSHOP 3: INDUSTRIAL DESIGN 1248  

the original curve. The number N of points on the curve used for coding the genome has an influence 
on the precision of the Fourier coefficients. This is due to the fact that we use the trapezium formula in 
(4) to approximate the integral during the calculation of the coefficients. We achieved numerous trials 
of (1) bordering a silhouette, (2) interpolating with N Points, (3) encoding with p harmonics, (4) 
decoding, for finally comparing the initial and the resulting silhouettes (see Figure 5). A qualitative 
design of experiments has been carried out (see Figure 6) with p varying from 80 to 2000 and N 
varying from 5 to 200. We clearly noticed that the if p is too low, the coding-deconding sequence – 
visually - fails to accurately represent the initial silhouette. In addition, for a given number p, there is a 
minimal number of points N beyond which the reconstructed curve displays strong oscillations (see 
such oscillations in Figure 5). In definitive, we found out that a satisfactory choice was achieved with 
a genome size of 71 and a number N of approximately 1500 points for the interpolation since both 
initial and resulting silhouettes were visually identitical. 

 
Figure 5. Comparison of silhouettes after interpolation with N points, encoding with p 

harmonics and decoding 

 
A last operation of normalization is necessary to the genomes so that the phenotypes – silhouettes – be 
independent of a particular location, size or rotation but be compared uniquely in terms of their shape. 
The coefficient a0 is simply set to 0 to fix the centre of gravity of all individuals at the origin of the 
representation plane. The invariance by rotation is useless because car silhouettes of the initial 
population are sketched horizontally and the next generations turn out to stay horizontal. Mc Garva 
[McGarva et al 1993] proposes to normalize the size of the curve in setting to 1 the small axis of the 
ellipse defined by harmonics 2. It would amount in our case to fix to a constant height the car 
silhouettes  which is not fair for short cars. We prefer to have a surface area invariance instead. The 
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calculus is then a bit more sophisticated but simply consists in dividing all coefficients am by a value 
function of | a1| and | a-1| (formula not detailed here). 

p\N 80 100 200 500 700 1000 1200 1500 2000 
5 I I I I I I I I I 
7 I I I I I I I I I 

10 SO I I I I I I I I 
15 SO I I I I I I I I 
20 SO O G G G G G G G 
30 SO O G G G G G G G 
40 SO SO O O GG GG GG GG GG 
50 SO SO O O GG GG GG GG GG 
55 SO SO SO O O GG GG GG GG 
60 SO SO SO SO O O GG GG GG 
70 SO SO SO SO O O O GGG GG 
80 SO SO SO SO O O O GG GG 
90 SO SO SO SO SO O O O GG 
100 SO SO SO SO SO O O O GG 
120 SO SO SO SO SO O O O GG 
140 SO SO SO SO SO O O O GG 
170        O GG 
200        O GG 

Figure 6. The design of experiments carried out for finding an ideal (p, N). Initial and 
reconstructed silhouettes are visually compared to result in subjective assessments: I – 

inaccurate, O – oscillations, SO – strong oscillations, G – Good result, GG – very good result 

3.2 Phase 2: Evolution of the population 
We use an interactive genetic algorithm to evolve the population and create innovation. The 
individuals can reproduce among themselves and produce in this way new solutions. In our case the 
genetic algorithm handles a population of individuals where each individual represents a possible 
design for a car body silhouette. A fitness value is assigned to each individual by the user. 
Consequently the fitness value  is a number between 0 and 6 according to the grade given by the user 
via an interface. The interface developed (see figure 7) displays six individuals at a time and the user 
can browse through all the individuals of a population. The user is supposed to evaluate all the 
individuals of a population on a scale from 0 to 6, where 0 is the worst and six the best evaluation. 
This fitness decides if an individual has a good chance to reproduce and create children. Furthermore 
it influences the chance of an individual to survive and to live on in the next generation. This 
development is reached by applying the following genetic operators to the population: 

• Selection: decides which individuals will reproduce and create children. 
• Crossover: builds a child’s genome from two parent genomes. 
• Mutation: changes in a random way a genome after the crossover. 
• Killing: decides which individuals from the parents’ population will survive and live on in the 

new generation. 
We decided to adopt some conventional choices in term of selection and killing operators and to 
propose an original crossover operator. First, apart the initial population of 30 individuals, we have 
fixed the number of individuals to 100 at each generation. We chose a turnover rate of 0.7, meaning 
that, for a coming generation, 30 individuals are kept from the previous one and 70 children are 
generated. In this way we do not lose potential good design solutions. The probability for an 
individual to be selected to be a parent is proportional to its fitness value (between 0 and 6). After 
choosing two individuals from the parents’ population, their genomes are combined into the genome 
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of a child by applying the crossover and the mutation operators. Afterwards the two individuals are re-
put into the parents’ population. Indeed, an individual can be selected more than once by the selection 
operator. 

 
Figure 7. The User Interface for the designer evaluation showing 6 individuals of a larger 

population of 100. The designer can browse the individuals by clicking on the arrow buttons 

We envisaged several possibilities to crossover the two genomes of parents into the one of the child. 
For instance, we envisaged a “Two-Part-Crossover”-method which seemed promising at the 
beginning. It consisted in choosing randomly a crossover point X, where X is a number between 2 and 
69. The child’s genome was built by the first X genes from the genome of parent A and the last (70-X) 
genes from the genome of parent B. This method produced innovative designs for car silhouettes and 
few useless forms. However the method didn’t produce stable results over the generations. This means 
that after some generations the car silhouettes were useless because they lost the tires or began to 
oscillate. 
The good idea is to operate a weighted mean between the gene values of the two parents to build the 
genome of the child. A crossover weight W is chosen randomly between 0 and 100. A new gene g* is 
formed by calculating the weighted mean of the genes gm,1 and gm,2 of the parents after formula (7). 

 (7) 

In function of the weight W we obtain different new design solutions which continuously interpolate a 
silhouette between the two parents’ silhouettes (see figure 8). The advantage of this method is the fact 
that a child resembles a lot to its parents and that it produces almost no useless car solutions (the tires 
keep their rounded shapes). The disadvantage is the relatively small explored space of possible 
solutions. In consequence, the population of design solutions has a tendency to converge rapidly. To 
enlarge the space of possible solutions we must apply a mutation operator (not detailed here). 
The killing operator is applied to the original population and kills at first all the individuals who have 
a fitness of 0. These individuals are considered totally useless or totally non-satisfactory and shall no 
more contribute to the evolution of the population. All the other individuals have a chance to survive. 
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The individuals to be killed are chosen by an inverse roulette wheel method. That means that the 
probability  for an individual to be killed can be expressed by formula (8). 

 (8) 

where  is the fitness of individual i and is the number of individuals in the population who have 
not been evaluated with a fitness of 0.  

 
Figure 8. Results of a weighted mean crossover using different weights W 

4. Test of convergence 
Is our system really capable to produce innovation and novelty? Is it possible for a human being to 
design with the help of our system a new car body silhouette which was not part of the initial 
population? This question also implicates the question if the space of possible solutions which can be 
reached by our system is large enough to result in a car body which is really new and innovative? 
To answer this question we can execute a simple test. A designer draws on a sheet of paper a car body 
silhouette which comes spontaneously to his mind and which is not part of the initial population. This 
car body silhouette is taken as “reference individual”. By working with our system he should try to 
obtain in the end the silhouette he had drawn before on the paper. To cope with this, he is supposed to 
evaluate the car solutions which look close to the reference individual with higher grades and those 
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who look different with lower grades. By counting the number of generations he needs to reach the 
reference individual, we can estimate the quality of our design system. 
Alternatively the target car silhouette may be an individual of the initial population that is removed 
from this initial population. 
 
We have preferred to make abstraction of the designer subjectivity in automating the ability of the 
system to converge towards an ideal car silhouette, so as to measure the sole quality of the method. 
The role of the designer is played by an algorithm, which automatically evaluates the individuals of a 
generation in terms of their similarity to the target individual. For that purpose, we defined a similarity 
index between two individuals. 

4.1 The similarity index 
The difference between two genomes Gk and Gl is given by D(k,l) in formulas (9). 

 with (9) 

 

with am = um + i vm, and α(m) a weight factor which should give more importance to the first genes 
than to the last genes because it is more easy to perceive. A series of user tests have been carried out to 
identify α(m)  for several values of m. We found out that α(m) is exponential and we approximated it 
with: 

 (10) 

Finally we define the similarity index between two genomes k and l as: 

 (11) 

where N is a normalisation factor. 

4.2 The results 
For the test we used the car in figure 9.a as reference individual. The parameters for the genetic 
algorithm were the following: population of 100 individuals, turnover rate of 0.7 and mutation 
probability of 0.3. The mutation could change a gene in a range of ±(50%-200%). After 10 generations 
our system reached the car body silhouette in figure 9.b which has a similarity index of 92%, which 
can be considered as a much satisfactory result. 
 

(a) (b) 

Figure 9. Comparison between the reference silhouette (a) and the final resulting silhouette (b) 
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The average fitness of the population converges over the generations to a high value (see figure 10), 
whereas the value of the best similarity index in the population (the fitness of the fittest individual) 
raises rapidly from relative low 44% to 92%. 

 
Figure 10. The average fitness of all individuals in the population over the generations 

5. Concluding remarks 
We have presented an encoding method which works on the basis of development of the design 
object’s silhouette into Fourier series. This method is very flexible and applicable to many design 
objects. The quality of coding and decoding has been subjectively assessed and tuned to be 
satisfactory. Furthermore we have used this encoding method to conceive an automatic design system 
working with an interactive genetic algorithm to evolve the design and create novelty. A crossover 
method for this new concept of genomes has been defined and evaluated. Finally, a formula has been 
identified to express a similarity index between two genomes in terms of the perceived difference of 
the phenotypes. In less than 10 generations, it has been showed that our system is able to automatically 
converge with a good quality toward a reference silhouette individual which is not present within the 
initial population. In consequence, our system should allow style designers to converge towards 
intuitive ideas and to make emerging surprise in exploring large spaces of potential silhouettes. 
This concept seems to be a promising way to create future automatic design systems. Several 
perspectives of extensions are:  

• Allowing a step of “direct modification by the designer” within an intermediairy generation, 
i.e. modifying some details of a silhouette curve or even adding new individuals to the 
population. We must acknowledge here that all our 30 initial silhouettes are silhouettes of 
existing commercial cars. Then, the experiment in this paper has just consisted in morphing 
between known solutions. For really creating surprise  and innovating, we must also test our 
system in a more creative way.  

• Combining several series of closed curves to better define the important lines of a car (see 
[Cheutet 2007]). 

• Making more complex the interactive assessment of individuals by the style designer through 
multicriteria assessments under several perceptual attributes like “Dynamic” or “Comfortable” 
(see [Dagher et al 2007]). 
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