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ABSTRACT 
An excellent product should be designed without failures. While multi-disciplinary design generates 
products with better performances, it can cause design troubles difficult to fix. On one hand, there are 
interactions among elements of the system that enhance the functionality of the system (“desired” 
interaction). On the other hand, interactions that could create non-trivial problems in the system 
(“undesired” interaction). In designing a multi-disciplinary product, the distinction between these two 
deserves attention. This paper aims to develop a method to detect unpredictable behaviors in multi-
disciplinary design such as mechatronics. A tool to detect “desired” or “undesired” interference among 
different design domains (components, physical phenomena, and parameters) can be developed based 
on qualitative physics. The ideas developed in the paper will be illustrated with an example of rotary 
encoder. This tool is useful to shorten the product development time by “predicting the unpredictable” 
failures. 

Keywords: Design, mechatronics, failures, interaction, predictable interactions, unpredictable 
interactions, constructive couplings, destructive couplings, Design Interferences Detector. 

1 INTRODUCTION 

The complexity of products is increasing drastically and consequently, the mechatronics product 
development processes also has become complex. In designing mechatronics systems the engineer has 
to deal with multi-disciplinary devices but there is not a unified method like a conventional 
engineering discipline. The main obstacles are strong separation of related disciplines, and the lack of 
a common language. Due to these obstacles, companies need longer development processes than 
expected. Because of unpredictability of the process, a physical prototype is often essential for the 
development of a mechatronics product. Because experiments and verification of the conceptual 
design can only be performed on such a physical prototype, this process is repeated many times until 
results become the desired one. This is time-consuming and cost-inefficient.  
An ill-machine is a machine with failures and there are three fundamental reasons. First, the large 
amount of domains and components involved in such complex systems increase human errors. 
Engineers have to handle a wide variety of elements crossing several disciplines. While there are 
research efforts to develop automated design synthesis tools [1], these tools are limited to a single 
domain. 
Second, the lack of a common language among disciplines causes many troubles. There is no unified 
design methodology to develop a mechatronics machine. This forces an engineer to follow trial-and-
error methods. This lack of a common language is a consequence of engineering education, still 
anchored only to one domain [2]. Indeed “Mechatronics is a synergistic combination of precision 
mechanical engineer, electronic, control and system thinking in the design of products and 
manufacturing processes” [3]. This definition indicates that mechatronics is not a pure, single 
discipline but a combination of disciplines. Technologies of systems engineering, such as Bond Graph 
[4], [5], can in part fill this gap. However, these approaches do not allow easy reuse of models after 
experimental validation, easy data exchange among different domains and extrapolated use of models 
in various contexts, or creation of a link between various physical representations of the same object 
[2]. 
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Third, mechatronics is not only the “constructive coupling” of domains that enable a system to work 
but even the “destructive coupling” of domains that generates unpredictable problems. Unforeseeable 
(unpredictable) problems can appear typically in those multi-disciplinary products. The more complex 
the machine is designed, the more chances of unpredictable problems can happen. It means that two 
components or modules can interact in an unexpected and unwanted way, dragging the system to work 
improperly. These unpredictable problems are the consequence of insufficient integration of domain 
knowledge. This third point is the main topic and engine of this article.  
The paper is an attempt to introduce a method to deal with unpredictable problems as consequences of 
destructive couplings. Such interactions cannot be easily detected. Often only after building a physical 
prototype, nasty connections appear and they become even more destructive because they require 
changes at the conceptual design level. The destructive coupling complicates the design process, and 
as a consequence, time and budget overrun.  In the future a tool called a Design Interferences Detector 
(DID) shall be developed. With DID, the design team can envision destructive problems well in 
advance, but not only after a prototype machine is developed. Ahead of the prototype, the DID aims to 
provide a proof for the design. 
The DID is well different from both FTA (Fault Tree Analysis) and FMEA (Failure Mode and Effect 
Analysis). Indeed, they deal with problems coming from deterioration of the system and faults are 
consequences of such anomalous circumstances. In contrast, unpredictable problems are generated by 
the intrinsic design of the system; in nominal circumstances the machine can generate anomalous or 
unexpected behaviors. The article will show how problems are generated by a combination of physical 
phenomena and states of the entity.  
We first give some definitions of terms, and then the third section will show an example of 
unpredictable problems, constructive and destructive couplings with descriptions of a rotary encoder to 
clarify the concept. Although this is an established, well-known component, tricky problems can 
happen. Section 4 shows the complexity in a mechatronics design quantified by feasible interactions 
among entities and  how the system can be simplified and tested within DID. Model-based reasoning 
and an extension of Function-Behavior-State modeling [6] constitute the foundation of the 
methodology. We present in Sections 5, 6, and 7 the details of the method to build DID‘s knowledge 
representation, a qualitative physics reasoning system (QRS), and a filter that can select unpredictable 
behaviors among subsystems and diminishes spurious solution. Conclusions end up the paper.  

2222    DEFINITIONSDEFINITIONSDEFINITIONSDEFINITIONS    

Predictable problems: behaviors that a designer takes into account in the conceptual design based on 
his/her own experience. The system is reconfigured using for instance redundancies. Predictable 
problems are also named predictable or expected behaviors.  
Unpredictable problems: unexpected behaviors that occur within a domain or by interactions of 
domains. They are named also unexpected behaviors.   
Desired interaction: interactions that enable the system to work properly 
Undesired interaction: causes of failures in the system, generally given by unwanted communication 
of different domains. 
Constructive coupling: desired and predictable interactions that results in desired and predictable 
behaviors. 
Destructive coupling: undesired and unpredictable interactions that results in undesired and 
unpredictable behaviors. 
 
For obvious reasonos, the combinations between desired and unpredictable behaviors and undesired 
and predictable behaviors have no reason to be analyzed. 

3333    DESIGN IN A MULTIDESIGN IN A MULTIDESIGN IN A MULTIDESIGN IN A MULTI----DISCIPLINARY DOMAINDISCIPLINARY DOMAINDISCIPLINARY DOMAINDISCIPLINARY DOMAIN    

This section illustrates a design case in which multi-disciplinarity causes undesired and unpredictable 
couplings among design parameters or phenomena, although multi-disciplinarity itself is useful to 
achieve superior functionalities. This section aims also to clarify the previous definitions by means of 
an example. 
Figure 1 shows a rotary encoder used very frequently in mechatronics machines to measure (angular) 
speed or position. Depending on the application, an encoder with appropriate accuracy has to be 
selected. Although this seems trivial and easy to perform, it can fail due to unpredictable coupled with 
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other elements. For instance, an encoder is mounted on a shaft to control the angular speed of the shaft.  
This connection between the encoder and the shaft is necessary for the encoder to perform its function 
and is predictable and desired. We can call this a constructive coupling. The encoder contains a photo-
detector that collects and transforms angular information into a signal. This connection with the photo-
detector is a constructive coupling, too. The encoder is the interface between shaft and software to 
obtain the position information of the shaft and to control the shaft rotation.  
In a real physical system, however, the eccentricity of the shaft is unavoidable and behaviors resulting 
from the eccentricity can disturb other parts of the system. The eccentricity provides periodic errors 
that will probably have a sinusoidal shape and a repetition of the fault every period. If there is a 
repetition of errors, we can in some way predict the error and compensate the transmitted information. 
Although it might lead to a destructive coupling, the eccentricity of the shaft is undesired but 
predictable, because a good designer can predict it from experiences and come up with workaround 
measures. 
This eccentricity problem happens due to the design choice, therefore is a good example of complexity 
by design [7]. Other examples of those undesired but predictable problems that the designer may face 
during the design involving rotary encoders include tilted axis rotation, radial deviation of the bearing, 
torsional stiffness, and axial oscillation of the track. 
 

shaft

tracks

shaft

tracks

 
 

Figure 1. Rotary encoder 
 

However, there is another type of troubles that cannot be solved easily. Suppose that another 
component operates at the same frequency of the error generated by the eccentricity. There can be 
interference between the two signals due to cross talk, which causes a peak in the frequency spectrum 
and the information provided by the encoder can become incorrect. Even if the eccentricity’s error 
remains acceptable, this new situation leads to a destructive coupling. 
One solution for this problem could be to change the frequency of one of the two subsystems, but this 
may result in other problems and cause a chain of changes that become too hard to fix. Another 
solution is to introduce a notch filter to cut off undesired signals. However, in any case, both of the 
solutions result in major design changes at the conceptual level that can mean extra costs and delay of 
the project. 
In the next section a method to detect such problems will be introduced.    

4444    DID: MOTIVATIONS ANDDID: MOTIVATIONS ANDDID: MOTIVATIONS ANDDID: MOTIVATIONS AND METHODOLOGY  METHODOLOGY  METHODOLOGY  METHODOLOGY     

This chapter first formalizes a complex system, second introduces the method DID is using to handle 
such complexity. 
Well-known techniques to deal with complexities are Design Structure Matrix (DSM) [8] and Suh’s 
Axiomatic Design (AD) [9]. Suh in his axiomatic design suggests a method for the elimination of this 
“spaghetti codes” through the identification of a logical structure to define classes. His famous 
independence Axiom is: Maintain the independence of Functional Requirements (FRs). 
However, these methods cannot deal with cases well in which the complexity increases unexpectedly 
during the course of design due to undesired and unpredictable interactions among subsystems.  
Because a large amount of interactions appears, the probability of finding out unpredicted problems is 
very high, because it is not easy to consider each single possible interaction. In addition, neglected 
interactions can generate a chain of failures like a butterfly effect that can enormously change the 
output of the machine. 
 
4.1 Motivations 
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A system is said to be complex when many disciplines are relevant and a large number of elements are 
present in the process. Even a very complicated machine can be decomposed into smaller modules. 
Within a module, we would like to assume that every interaction among components is well predicted 
and unpredictable problems do not appear inside the module. A healthy behavior of a module comes 
from sound design based on the designer’s experience.  
However, during the design, two different situations can happen: a new component needs to be added 
or the whole module needs to be redesigned. In the first case we need to detect eventual interactions 
caused by the added component, while in the second case interactions among all components need to 
be examined from the scratch. It is important to understand the influence of each component on the 
behavior of the entire system or of other modules. The interaction is bidirectional. A component can 
influence on a module and its environment, and vice versa. The consequence is a no-trivial analysis 
and in the worst case redoing of machine’s conceptual design is requested. These considerations are 
significant even in a single domain and in a mechatronics system design, the degree of interactions 
increases in the following manner (1).  
The number of interactions increases as the number of domains and the number of components 
increases not linearly but in the 2nd power. This emphasizes the relevance of possible interferences in 
a multi-disciplinary structure because the power of two appears related to the domains. The maximum 
number of possible interferences includes wanted, unwanted, predictable and unpredictable couplings 
as well as no-interactions. 

 

Max_num_interactions= 2• m2 • (i −1)
i=1

n

∑

= 2m2 n(n −1)
2

= m2n(n −1)

     (1) 

       m= number of domains 
       n= number of components 
 
Figure 2 shows how the situation gets entangled even with two components; in the worst case 32 
interferences appear. 
In modern mechatronics machines generally more than thousand components are included and many 
disciplines are interacting in the process. The consequence is an incredible amount of possible 
unexpected interactions that can easily lead to failures and that the designer can easily and erroneously 
neglect. These unexpected interactions lead to unexpected behaviors and unexpected behaviors leads 
to unexpected functions for the machine. 
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Figure 2. Interferences among two components 
 

This suggests the need to develop a tool to automatically analyze the conceptual design of the 
machine, to predict if nasty interactions can ever occur, and to avoid unexpected relationships among 
domains at a later stage of the design. The Design Interferences Detector (DID) aims to accomplish 
this goal.   
 
4.2 Methodology  
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DID is composed of a conceptual design model that the engineer describes, a reasoning mechanisms to 
detect all possible behaviors, and a filter to focus on possible problems (Figure 4). Model-based 
reasoning and Function-Behavior-State modeling constitute the foundation of the methodology.  
The following explains how DID detects “unexpected” behaviors. 

− The designer describes behaviors that are required to happen together with conceptual 
description of the machine. 

− DID reasons out all possible physical behaviors that can occur using a QPT (Qualitative 
Process Theory) [10] based reasoning system (QRS). These generated behaviors can include 
both expected and unexpected behaviors. 

− DID filters out unexpected behaviors by separating expected behaviors from all possible 
reasoned out behaviors. Behaviors that are not included in the predefined (expected) behaviors 
might cause potentially unexpected functions. 

− The designer can now distinguish predictable expected behaviors from unexpected problems. 
The designer is now informed about the future potential problems, which would suggest the 
necessity for further analysis of problems and modification of the design (Figure 3-4).  

 
The next chapter describes all the steps to detect unpredictable problems with more details.  . 
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Figure3. Location of DID  
 

 

 
 

Figure 4. DID processes  
5555 MODEL: MODEL: MODEL: MODEL: KNOWLEDGE REPRESENKNOWLEDGE REPRESENKNOWLEDGE REPRESENKNOWLEDGE REPRESENTATION SCHEMETATION SCHEMETATION SCHEMETATION SCHEME 
The DID model is an extension of the FBS model [11,6]. The FBS model focuses on the design 
process and provides both a methodology to structure knowledge and QRS reasons out all the possible 
behaviors that can occur, thereby establishes connections between states and behaviors [12]. This 
design methodology is based on decomposing high level functions into lower level sub-functions till 
they can be associated with some physical embodiment. The physical embodiment is conducted, based 
on catalogues of physical features by which functions are associated with components through 
behavior.   
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Figure 5. FBPhPhS general model description 
 

In FBS, a behavior is the link between function and state and eventually structure. The relation 
between function and behavior is subjective, because a function is a description of behavior abstracted 
by human through recognition of behavior in order to utilize the behavior [13]. In contrast, a relation 
between behavior and state is more objective based on a physical principle. A state of an entity is 
defined as a set of attributes and relations among relevant entities. A behavior is a temporal sequential 
state transition and physical phenomena determine behavior of an entity. 
Once all entities and relations among them are defined on FBS, QRS reasons out physical behaviors 
based on QPT. The reasoning results of QRS include not only predicted behaviors but also other 
phenomena that are likely to happen. Such unpredicted physical phenomena can lead to unpredicted 
functions. However, since FBS does not deal with physical phenomena explicitly, FBS cannot reasons 
out unpredicted functions directly. 
Behaviors can influence on state and structure, too. In other words, a behavior change can lead to a 
new state (because the behavior is basically a state change), which in turn initiates new behaviors. 
These mutual dependencies among behaviors and state (hence structure) are governed by physical 
phenomena but cannot be directly reasoned out, because of the separation of FBS and QRS.  
These are the reasons why we need to develop DID as an extension of FBS that incorporates QRS. 
Figure 5 illustrates the general model representation for DID, which is called FBPhPhS (Function-
Behavior-Physical Phenomenon-State model). FBPhPhS explicitly includes physical phenomena 
between behavior and state and is an integration of FBS and QRS. An example of how unexpected 
behaviors are generated by FBPhPhS is shown in Figure 6. The physical phenomena represented in the 
FBPhPhS can be due even to different domains.  
The concept of attributes of relations is included in FBPhPhS to prioritize reasoned out behaviors. A 
relation such as “connected” should have an attribute to signify the distance of the connection. 
Contrarily, if two entities are not explicitly (physically) connected, FBS (hence QRS) will not consider 
that their coupling exists. This is not true when physical phenomena act from a distance (e.g., 
electromagnetic field and heat transfer). Therefore, any entity defined in FBPhPhS must have relations 
with other entities but such relations should have attributes (typically a geometrical distance) that can 
be compared with each other. However, this also means that QRS reasons out a huge number of 
unfeasible behaviors (spurious behaviors) as well. 
With the attributive information about relations, QRS is able to prioritize reasoned out phenomena in 
the order of, for instance, significance or plausibility.  An example of how attributes for relation can 
generate a not expected physical phenomenon is given in Figure 7. In the first figure physical 
phenomenon is generated by the state of one entity and it permits then the state transition. The same 
physical phenomenon can act on another entity if they are directly connected. In the second figure the 
physical phenomenon is generated by the combination of two states of entities. They can also be 
indirectly connected. Then this physical phenomenon realizes the state transition. 
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Figure 6. Difference between FBS and FBPhPhS due to Physical phenomena 
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Figure 7. Difference between FBS and FBPhPhS given by attributes for relations 
 

 
 

 

6 QUALITATIVE REASONING SYSTEM 
The previous section described the DID model structure (FBPhPhS) and the knowledge 
representational scheme. Here it is explained better about the reasoning system (QRS) based on QPT. 
DID is a tool that aims to work at an early stage of the design where only qualitative information is 
available.  
DID uses qualitative physics based reasoning [10], among others based on Forbus’ QPT [14] that 
envisions possible physical phenomena that can happen to the system.. An early attempt of using QPT 
for design can be found in [15], [16]. QPT is an appropriate theory to describe dynamical situations 
and therefore to reason about processes. By envisioning these phenomena, DID also finds interactions 
among different theories. These interactions signify knowledge level interferences that cause two types 
of complexity in product development, viz., complexity by design, disciplines or intrinsic complexity of 
multidisciplinarity [17]. 
QPT provides a method for encoding knowledge about the physical world and some methods for 
reasoning with that information. The fundamental knowledge within QPT is a network of entities and 
physical phenomena that can happen to these entities when certain conditions are satisfied. It captures 
basic knowledge about physical world that corresponds to commonsense knowledge. In order to 
achieve consistency in representation, it is important to stick on ontological obligations while 
collecting the basic knowledge. QPT can represent entities, physical phenomena, attributes, values of 
attributes and connections of FBPhPhS using its fundamental concepts individuals, processes, quantity 
conditions and influences. Functions of FBPhPhS is not represented within QPT. 
 

7. FILTERING BEHAVIORS 

In principle, FBPhPhS reasons out all possible physical phenomena including both predictable and 
unpredictable, many of which are even superfluous. For this reason the system needs a filter. QRS 
employs QPT to encode knowledge about the physical world including a network of entities and 
physical phenomena that can happen to these entities when certain conditions are satisfied. QRS 
generates all possible physical phenomena that can happen. Before the inference, the designers should 
define predictable phenomena, which are usually main functions of the machine and known 
phenomena. Anything else is by definition an unpredictable problem. However, these unpredictable 
problems can be prioritized as described below. 
 
7.1 Prioritization of the detected behaviors  
Since it is well known that a qualitative physics based reasoning system can reason out numerous, 
superfluous behaviors that can be neglected, it is crucial for the system to prioritize reasoning results. 

S B 
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B PhPh S 
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FBS FBPhPhS 
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For instance, it may reason out that anything in a gravity field receives gravity force in proportion to 
its mass. It also reasons out that anything that receives force might deform and depending on the 
material property, the deformation could be, for example, elastic deformation, plastic deformation, or 
even brittle fracture. The interesting part of this story is that the system even warns with a scenario that 
there is a possibility that the machine can be destroyed by its weight, which is something unusual. 
Using a qualitative reasoning system requires to remove such unlikely situations from the reasoning 
results. This can be done initiating the attributes for relations that were introduced before. Attributes of 
relations are defined by relations between attributes of entities, for instance distance, gradient of 
temperature, and difference in velocity and acceleration. With those characteristics the system can 
select which behaviors should be taken into account related to the required accuracy.  
 
7.2 Introducing quantitative information to DID  
Qualitative knowledge is used for reasoning about the physical world. “The value of reasoning 
qualitatively resides in the translation from measurements to conceptual understanding. On its turn 
conceptual understanding is a prerequisite for controlling and troubleshooting a system” [14]. 
However there are some situations in which quantitative information is also required.  
DID identifies each single phenomenon but it is possible for a number of them to be superfluous. For 
instance, depending on the desired accuracy, life-cycle of the system, or operation of the device the 
detected phenomenon can be insignificant. To give an example, heat generated by a specific 
component can in time damage the behavior of another component in the system, such as a spring by 
changing its natural length. If the life-time of the spring is shorter than that of the component, or if the 
elongation has no influence on the final outcome, such information can be neglected. To do so, further 
information should be introduced into the system in order to avoid superfluous states confusing the 
engineer with irrelevant conclusions. 

 

Figure 8. Spring influenced by high temperature 
 

Prioritizing the reasoning results is not sufficient in this pattern, however. Quantitative information 
should be introduced to avoid ambiguities, or in explicit circumstances of superfluous behavior. This is 
because introduction of quantitative information might result in loss of general information about the 
system, which is undesirable from the point of view of evolution of the system.  In other words, while 
using a quantitative reasoning system leads to eliminate ambiguous or irrelevant behavior, the system 
looses general information. The designer must evaluate the convenience of introducing data in the 
system.    

8888    CONCLUSIONS CONCLUSIONS CONCLUSIONS CONCLUSIONS  
This paper suggested a method for automatically detecting “unpredictable” problems in the conceptual 
design of complex machines such as mechatronics machines. In Section 2 some useful definitions are 
introduced. Using a rotary encoder as an example, Section 3 clarified the meaning of constructive and 
destructive behaviors (couplings) that result from a combination of desired and undesired, predictable 
and unpredictable problems. Then, in Section 4, DID is introduced as a tool to identify these 
unpredictable problems that are mostly resulting from complexity by design and can cause 
unpredictable behaviors of subsystems. DID first detects all physical behaviors that can eventually 
appear in a machine and then filters out unpredictable problems. In the succeeding sections more 
details were given about several aspects of DID. 
Future tasks include the development of DID taking FBS as a starting point, including both the 
reasoning system and an adequate knowledge base. Although the system is yet to be developed, this 
approach seems feasible and promising. 
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