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ABSTRACT 
Change is perhaps the most persistent aspect of product development. It could arise from external 
input that must be overcome but also from an explicit choice for improvement. In spite of this general 
appreciation, the management of engineering changes in development processes is lacking. Only 
recently this subject has started to attract a growing number of studies attempting to tame the impact 
of change on development processes. We propose that a plan for addressing change must include the 
use of carefully designed collection of design methods, termed design methodology. Such 
methodology must be tailored to the particular design context. We demonstrate through a case study, 
in the context of a high school mechatronics design course, that such a methodology leads to highly 
effective engineering change management. We conjecture that similar practices would be effective in 
industrial settings.      

Keywords: design rationale, knowledge management, robotics, mechatronics, design methodology, 
agility, robust design, fault tolerant design 

1 INTRODUCTION 
Engineering changes are inherent to any engineering project. The need for change may arise due to 
many aspects. For example, fast technological change or inexperienced designers may lead to lack of 
technical knowledge. Alternatively, the need for quick time-to-market leads to employ concurrency in 
the design process, which in turn, instigates making design decisions without all necessary 
information. These situations will lead to engineering changes when new knowledge is gained about 
the product or new information arrives from parallel development paths, rendering previous decision 
defunct. 
If changes arrive in the initial stages of the project the consequences might not be critical; however, 
some change requests at the end of a project could easily fail it or consume major effort and cost. 
Therefore, engineering change management is crucial to manufacturing organizations. From a state of 
minimal presence in research papers as reported by  [10], the situation has changed in the last few years 
with publications dealing with industry practices  [28], [29]; improving the administrative process of 
change management  [16], [28]; and supporting the actual change handling  [3], [4], [10], [25].  
Fricke and Schulz  [6] discussed the idea of designing for changeability. They propose that in order to 
support changes in systems throughout their life cycle, these systems' architecture needs to incorporate 
four aspects: Flexibility, agility, robustness, and adaptability. They further propose principles that 
support these aspects such as system simplicity and components independence. From our perspective, 
these principles should arise from the design methodology used in the design. A design methodology 
that needs to support changeability will use these and other principles as required by the context. Such 
methodology may include methods for improving changeability or resilience to change  [24] [27]. 
We propose that the first step in the ability to respond quickly to changes is an appropriate design 
methodology which is designed to address its context  [22]. The context includes the technical aspect 
(e.g., what is the nature of the products being developed, which disciplines are involved in its design), 
the market aspect (e.g., who are the customers, is the market dynamic), the human aspect (e.g., who 
are the designers, how are teams organized), and the project resources (e.g., what is the design 
infrastructure, what is the project budget). When one of these aspects includes the need for addressing 
change, then if designed well, the design methodology has to support it. 
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Our study takes place in the context of a high school mechatronics course. The course lasts two years 
and central to it is the design, development, and testing in a competition of an autonomous mobile 
robot. The course has been running for several years. Its curriculum focused on the technical 
knowledge needed to design a robot. Students in the class have won prizes in an international robot 
competition; nevertheless, we observed that the products developed could be improved. Consequently, 
we set to improve the course by teaching them design methodology in addition to the technical 
knowledge. This methodology was designed to fit the context of the course and part of the 
requirements was to address the need for engineering change during the robot design. The drivers for 
addressing change included inexperienced designers, the short development time that required cycling 
through design, prototyping, and testing stages, as well as the desire to expose students to methods that 
support efficient change management.  
We present a case study of handing a particular engineering change of a mobile robot just before it 
was scheduled to pass a qualifying test. The change was critical and had to be analyzed, solved, and 
implemented in hardware and software under extreme mental and objective time pressure. It was 
handled successfully in an astonishingly quick manner. This capability was afforded by the design 
methodology the designers mastered through the course. The case shows how the design methods 
comprising the methodology supported the change management. We argue that with minor 
modifications, similar design practices could support similar capabilities in industrial context. 

2 THE CONTEXT OF THE CHANGE MANAGEMENT CASE 
The context of the case study is a mechatronics course for high school students. In this course, 
students study mechatronics through a PBL approach  [12], [22]. The course lasts 2 years in which high 
school students without technical background learn the technical subjects needed to build an 
autonomous robot. In addition to the technical subject, students are taught a 40-hour section on design 
methods. In the course, teams of students design and build autonomous mobile robots for an 
international competition. The competition is the fire fighting robot competition hosted annually by 
Trinity College, Hartford, CT (www.trincol.edu/events/robot). In the competition, a robot has to 
explore a model of a house, find a candle, extinguish it and return to the entry point. The competition 
rules are modified annually. 
The case study provides an overview of the design of the robot $ff-$01=$fe that won the 1st place in 
the 2004 contest. The robot was designed and built by a team of 6 high school students. The case 
focuses on the change management exercised by the team on the qualification day before the 
competition when the team encountered the floor obstacle that was different from the contest rules. In 
a matter of two hours, the team analyzed the change; developed potential counter measures; analyzed 
their consequences; selected the solution strategy; and implemented and tested it successfully. No 
other team ventured to address the change.   

2.1 The design methodology 
Engineering design is the process of creating a solution to customer demand, whether observed or 
assumed, by an economic product. This process could be supported by a set of well orchestrated 
methods that form a coherent methodology. The methodology developed for the course context is 
composed of six methods  [13]:  
1. Problem formulation: ATR. Problem formulation is central to successful product development. The 
desire to fully understand the problem before starting design is seldom possible, the formulation and 
the designed product evolve simultaneously  [2]. Atomic (which cannot be further divided to two or 
more requirements) Requirements (ATRs) is a tool that helps to understand the problem requirements, 
desired functionality and debugging requirements  [11] [26]; it allows to divide the requirements into 
very fundamental, thus simple to understand requirements. It also helps identify unnecessary, 
overlapping, or conflicting requirements, isolate bugs, and clarify what is to be done to implement the 
requirements. In the debugging mode, and problem solving, each requirement can be tested easily and 
separately. Using ATRs facilitate mutual understanding among programmers, testers, engineers, 
mentors, salesmen, management staff, and other persons who have to approve or to implement them, 
regardless of the ATRs’ actual phrasing. 
2. Conceptual design (CD), together with problem formulation is one of the two most critical steps in 
product development  [31]. Tools for supporting CD are mainly intuitive. They range from idea 
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generation (e.g., brainstorming  [19]), to a collection of structured methods (e.g., QFD  [1]) for 
translating between requirements and engineering characteristics (e.g., the HoQ, house of quality), and 
subsequently, evaluating concepts (Pugh concept selection  [20]) and questioning their performance 
(e.g., FMEA – Failure  Mode and Effects Analysis). The latter is a proactive tool that enables the 
identification and prevention of process or product errors before they occur. New methods such as 
SOS also support concept generation  [24], [31]. Using CD tools improves project organization, 
supports understanding the critical issues early on, and helps divide the work between participants.  
Consequently, CD systematically supports changeability.  
3. ASIT (Advanced Systematic Inventive Thinking) is a systematic method for creative thinking, which 
is designed especially for problem solving  [9]. It is important when a solution to a non-trivial problem 
is needed. The students see that by using this method, they can solve complicated problems and not 
just in the course but also in their life in general. ASIT encourages multidisciplinary thinking, 
generalization and integration capabilities and allows distinguishing between the essential and 
unimportant problem aspects.  
4. Microprogramming (µP) allows for designing the robot control by handling an interface between 
the robot (operational unit) and the robot’s controller (control unit). The µP method allows designing 
the control by using two different representations of the control part: Finite State Machine (FSM) and 
Algorithmic State Machine (ASM) that make it easy for designing, debugging, and coding, 
simultaneously  [14]. µP design shows the students that there is a duality between two representations 
of control schemes (FSM and ASM) and that even though it is more “natural” to use one to describe 
the robot operation (FSM), it is better to use another in order to be more robust and efficient (ASM) 
 [7] [14]. This duality is particularly useful in dealing with change as the control could be modified in 
the FSM representation while making it more efficient in the ASM representation. µP also shows them 
a way for being more effective when for example it is possible to combine two or more control 
schemes and save resources.  
5. Fault tolerance (FT) brings insight of the difference between products that are designed according 
to requirements, and robust products that can sustain faults up to a certain degree. It also introduces 
the students with possible faults during the design phase which improves their ability to identify and 
overcome problems. This influences the students to be more careful when they design the robot parts, 
for example, the sensor array. It also demonstrates that in unstructured environments, no design could 
survive without making it robust to faults because we are unable to foresee all potential situations.  
Another issue addressed by FT is introducing the idea of a design verification starting from early 
design stages. This idea further translates into performing testing of finished product as well as on-line 
and off-line testing and the self-checking  [7]. Additionally, FT includes a so-called design-for-
testability (DfT). The main idea of the DfT is taking into account the FT issues in advance, and 
designing robots having an ability to be tested. Actually, providing the testability (comprising of 
observability and controllability) is the correct way to design any reliable technical system. To be fault 
tolerant, a system must be able to overcome permanent, intermittent or transient faults. The testing or 
self-checking capabilities need to be translated into alleviating or eliminating the impact of the fault. 
Adding the FT property into a system design may complicate it but if faults go undetected, 
autonomous robots in real-world environments may behave in an unpredictable or dangerous manner 
 [18]. This creates a trade-off for product designers.  
6. Fuzzy logic (FL) simplifies issues related to motors control. It is more straightforward and can be 
checked in an easy way, compared to other control methods. FL control is more intuitive to the 
students and is faster to implement than other control methods. Moreover, Gundogdu and Erenturk  [8] 
show that the results obtained from the fuzzy controller of a DC motor driven four-bar mechanism are 
not only functionally superior than an optimal PID controller, but also much better in the controller 
output signal structure, which is more remarkable in terms of the hardware implementation. FL led to 
improved control reliability, under uncertainty conditions that is easily adaptable to new problems. 

2.2 The design project 
Following discussion with their mentors and graduates of the course the team decided to divide itself 
into hardware group composed of four students and software group with two students. There was 
continuous interaction between the groups; for example, if the software team designed the robot 
navigation in a way that required two distance sensors on each of the robot sides, it dictated constraints 
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on the robot structure. On the other hand, since the robot size is limited by the competition rules, the 
hardware team took into account the limitations enforced by the hardware and stability considerations 
when the sensors’ location was designed. Figure 1 provides an overview of the design process. 
Initially, the team studied the competition rules and extracted requirements that were gradually refined 
to the list in Table 1 (step {1} in Figure 1). Each of the above subjects was further analyzed for 
obtaining more detailed "atomic" requirement. For example, in relation to the driving/steering system 
(1h), the students raised additional requirements (Table 2). 
These requirements assisted the students to appreciate the complete task. For example, the students 
realized that a smaller robot could have more space to recover from undesired situations like hitting 
the wall. That directed them to design a small footprint robot (requirement 1h.11, Table 2) and to 
increase its height for the needed hardware space, while maintaining reasonable robot stability. Figure 
3 shows some of these design parameters and their relationships. 
 

Pµ  
Figure 1: Overview of the design process. 

Table 1: ATR final version (condensed) 

1. Autonomous robot 
a) Microcontroller 
b) Motors & drivers 
c) Construction materials 
d) Sensors 
e) Battery 
f) Electricity system 
g) Extinguishing device 
h) Driving/steering design 
i) Sensors’ array design 
j) Wiring design 
k) Maintenance design 
l) Control design 
m) Algorithms & software design 

2. Wall following  

3. No tethered operation  
4. Fastest possible 

a).......Weight 
b).......Center of gravity 
c).......Motors power 
d).......Uneven floor consideration 
e).......Furniture consideration 
f) .......Stop conditions 

5. Sound activation 
6. Furniture 
7. Uneven floor handling 

a) Speed considerations 
b) Balance & center of gravity 
c) Wheelbase 
d) Possible locations 

8. Candle extinguishing  
9. Return trip 
10. No touch of walls 

a) Smaller robot 
b) Special algorithms 
c) Escape possibilities 
d) Straight wall following 
e) Rotations 
f) Speed and position control

11. No touch of candle 
12. Reliability  

a) Fault tolerance 
b) Easy and fast repairs 
c) Valid software 
d) Possible fast changes 

Table 2: Refinement of driving/Steering ATR (1h) 

1. Manoeuvrability when making turns 
2. Ability for fast recovery from the corridor middle 

straight line  
3. Ability to overcome inclined surfaces in a reliable way 
4. Ability to avoid furniture with easy manoeuvre 
5. As small as possible turn radius 
6. As small as possible correction after doing a turn 
7. Stable and will not crush if it hits a wall, furniture, or 

8. Fast and reliable aligning of the robot at all 
room entrances 

9. Simple and easy to implement system 
10. Ability of the software team to deal properly 

with the chosen driving/steering system 
11. Smallest possible footprint to allow more 

space to recover from a fault, or a wide turn 
before hitting the wall 
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inclined surface 
 
After the requirement refinement, the students started using conceptual design tools (step {2} in Figure 
1; details in Figure 2). They divided the requirements into four robot main subsystems (mechanics, 
electronics, software, and control)1 and proceeded with each subsystem, considering its own 
requirements, using tools like QFD, FMEA, and failure analysis. For example, they carefully 
considered 11 possible driving/steering alternatives from which they selected a forward driving 
steering; this selection recorded all pros and cons of the alternatives and the reasons for the final 
choice. Subsequent discussions focused on decreasing overall robot footprint size (requirement 1h.11). 
 

 
Figure 2: Details of conceptual design of drive mechanism 

The motors were the most influential component on the robot footprint. Reducing motors size would 
allow for a significant decrease of robot size which would increase the free space for robot movement 
between the corridor walls, thereby improving robot reliability. For this task, the student used ASIT. 
They followed the process, selecting the solution strategy (restructuring) and the particular technique 
of breaking symmetry and focussed on the motors. After a detailed session, they developed a compact 
asymmetric drive (Figure 2), with its advantages and disadvantages which they had to further consider. 
A critical issue in the design is the history keeping for facilitating future modifications. By 
systematically using QFD and other structured tools for almost every significant decision (e.g., 
selecting driving mechanism, extinguishing mechanism, and programming language, and placement of 
sensors), the students kept records of all options, their consequences, final choices, and subsequent 
modifications. In essence, such structured methods facilitate recording design rationale  [21]. In future 
modifications, the sequence of tool use could be visited to check whether any decision needs to be 
revised. In addition, students kept detailed records of the relationships between different problem 
parameters while they performed the design; a model of such relationships is depicted in Figure 3. 
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1 By the time the students finished with steps {2} and {3}, their initial subdivision into four main subsystems has 
changed to the one depicted in Figure 1, ATR detail . 
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Figure 3: Relationship between robot design parameters 

Following the conceptual design, the students could continue refine the requirements (step {3} Figure 
1). For example, now that the drive has been selected, the requirement to 'not hit a wall' (refer to 10c in 
Table 1) could refer to the selected hardware as sown in Table 3. 

Table 3: Refinement of ATR 10c  

a. Stop robot 
 
 
 
 
b. Drive robot backwards 

1. clear right motor speed,  
2. send brake data to the motor controller for right motor,  
3. clear left motor speed,  
4. send brake data to the motor controller for left motor.  
5. wait 100µs. 
6. turn on right motor. 
7. send reverse direction to right motor. 
8. send slow speed to right motor. 
9. turn on left motor. 
10. send reverse direction to left motor. 
11. send slow speed to left motor. 
12. send reverse direction to right motor. 
13. wait 1 sec. 
14. clear right motor speed,  
15. send brake data to the motor controller for right motor,  
16. clear left motor speed,  
17. send brake data to the motor controller for left motor.  

 
ATRs such as those in Table 3 could easily be translated into software control statements by using the 
µP conventions {9}. µP was used to design the software. Basically the robot system was divided into a 
control unit (CU) and operation unit (OU) along with a memory, which allowed for clear identification 
of input (x) to the CU from the OU, and output (Y) from the CU to the OU. This information enabled 
creating a finite state machine (FSM) of the robot control and functions that is easy to debug and to 
allow for easy modifications as necessary. The development of the software itself was easier to 
execute in the equivalent representation as an ASM  [15], [17]. Therefore, short portions of the 
software, like right wall navigation, searching for the candle flame, etc., were first constructed as 
ASMs, and then converted to FSMs for further debugging and ease of handling. 
The final ATR list (  Figure 1) also included many important requirements such as making the robot 
more reliable through the use of the following tools: 
1. Failure analysis {5} of past designs helped avoiding past failures such as wiring schemes problems, 
use of one battery to the fan, logic, driving/steering subsystems, choosing the fan controller, and the 
failures of past designs in navigation and turns in the arena.  
2. FMEA {4} helped in identifying possible failure of the IR sensors due to two possible distances for 
each sensor's output voltage; fan placement in front; choice of extinguishing device; and choice of 
distance sensors. 
3. Fault tolerance {6} was integrated with the hardware conceptual and detailed design. For example it 
helped in designing stable robot by lowering the robot's center of gravity, reduced the wires' length for 
obtaining a better organized layout of the robot, and lowered the height of the UV sensor in order to 
prevent false readings. In addition, subsequent to the software design, FT used to add checkers for 
sensors' readings, battery voltage, and detection of illegal micro-instructions. 
4. Fuzzy logic {8} was used to design the robot speed and position control. The simplicity of the rules 
provided a way to concurrently design the hardware and control. For example, at first the students 
used one distance sensor in the robot front, because there was no need to align the robot front; only 
side alignments was required. Then, in the control design stage, one of the fuzzy control rules was:  

"if the motor is spinning much too slow and the motor speed is slowing down a lot and if the 
motor is keeping accumulating low speed a lot, then the motor speed should be increased a lot".  

Then when using FT, there was a need to catch a situation where the robot front is too close to the 
wall. So the rule was changed to:  
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"if the motor is spinning much too slow and the motor speed is slowing down a lot and if the 
motor is keeping accumulating low speed a lot and if the robot is not too close to a front wall, 
then the motor speed should be increased a lot".  

That forced the team to design front wall identification. As there was no way to know if the robot will 
be aligned with the front wall, or with left or right deviation, the team decided to add another sensor at 
the robot front so there would be a right and left front distance sensors that will identify close 
proximity of the robot to a front wall, no matter how the robot is approaching the wall.   
The simplicity and readability of the control rules and the fact that they connected several design 
parameters, allowed using them for tracing the impact of changes in design parameters on others.   
5. ASIT {7}. When the students encountered a difficult problem such as various tradeoffs, they 
employed ASIT to provide guidance. For example, ASIT was used for IR sensor geometrical 
placement, improving the IR sensors' unstable readings, placing the fan, and improving the flame 
focusing sensor function. 
The whole design process could be described as a problem formulation exercise. Starting from the 
original contest rules (  in Figure 1), the requirements have been transformed into general ATRs ( ), 
became better understood and more detailed ATRs ( ), by proposing conceptual solutions that 
facilitated additional refinement. Subsequently, by fleshing out all outstanding issues, elaborating 
unmet requirements, and by making sure that all the requirements could be met by the proposed 
design, they became the final ATRs ( ). 

3 THE CHANGE MANAGEMENT CASE 

3.1 The problem 
On Saturday, the earliest time possible for qualification purpose, a requirement for participating in the 
contest, the team noticed that the uneven floor items (ufi) were different than their description 
published in the official contest web site. The robot, which was designed for different items, would not 
perform well with these modified items. Figure 4(a) shows the floor item building instructions as were 
introduced by the contest official web site. Figure 4(b) presents the actual ufi used in the contest. The 
organizer covered the ufi with black material in such a way that it made them higher, wider, and 
changed their original shape. 
It was clear to the students that the robot would not function well with these new ufi since they 
remembered its input into the planned maneuvering of the robot. They had only two hours before their 
qualifying run and decided to change the robot. As shown in Figure 3, each requirement or design 
parameter influenced and was influence by multiple other parameters. Consequently, any change was 
expected to produce a ripple effect. Yet, the team was confident. The software team said it would not 
be a difficult problem, as they have built the software using µP and FT guidelines. Therefore, it will 
take no more than two hours including experiments to modify the software. This was in fact true, it 
took twenty minutes for the hardware team and then after one hour and thirty minutes, the robot was 
fully functional and handled perfectly the new ufi.  
  

 

 

(a) (b) 

Figure 4: Floor item: (a) official item, (b) shape with black covering (bottom view) 
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3.2 The change handling 
In order to understand fully how to address this change, the team had to start from the change request 
to the original requirements as they developed from  to  and see how the change affects other 
decisions. The students had to be very confident that they could handle the change including possible 
hardware and software modifications in the available timeframe. No other team attempted to do so.  
It quickly became clear that the problem caused by the ufi change was reduced robot stability while 
climbing ufi. In the robot design, the students faced a similar problem related to robot stability when 
using FMEA. There, they reduced the robot footprint to facilitate better fault recovery and addressed 
the stability by arranging heavy parts below. The options they considered in the past were: increase 
robot size; add weight; lower robot height; or rearrange robot parts. These options were either 
infeasible (lower height); too difficult to implement (rearrange robot part would involve change of 
wiring including power lines extensions, changing sensor placements, etc., which could not be realized 
in two hours); or harm other performance qualities (add weight would require more power or would 
reduce robot speed). Given this deadlock, the student initiated an ASIT session that took 20 minutes 
and whose template is shown in Table 4. The conclusion was extending the castor wheel for 
improving the longitudinal stability while maintaining the transverse dimension as before. Operating 
within the 'closed world' principle of ASIT, guided the team to make the least change to the robot so 
that it could be implemented in two hours.  

Table 4: ASIT session template 

I. Preparation Stage 
Problem objects list: Motors, wheels, connectors, and base plate. 
Neighbourhood objects list: Robot components, arena, and floor items 
Functional structure: The robot has to overcome the new floor items. The object that decreases the robot 
ability to handle the new floor items is robot size.  

II. Solution Stage 
Operation: Increasing robot size 
Restructuring technique selection: unification 
Conceptual solution: The relation “decrease the robot ability to handle the new floor items,” will change 
from decrease relation to increase if the following operation of “increasing the robot size” will be performed. 
Select an object: castor wheel 
Solution statement: The object “castor wheel” will be modified so that it will increase robot size.  

 
The task was now to analyze the details of the choice and make sure that all its consequences could be 
handled effectively within the available timeframe and resources. The first task was determining the 
precise length of the wheel extension. This involved merely modifying previous calculation with the 
new ufi dimensions, leading to a 2cm extension of the longitudinal robot dimension. As a result, a 
search was conducted to find all items in the design that incorporated this or derivative dimensions as 
well as items that could be affected by the change of the ufi dimensions. This search was done in the 
context of FMEA to make sure that not only previously addressed issues are visited and resolved but 
any new impact of the change is handled. The search included top-down and bottom-up inspections. 
In the top-down inspection, the different versions of the robot requirements (i.e.,  - ) were checked 
one by one. The in-room activity of finding the candle and extinguishing it were not affected as this 
dimension played no role in their consideration. The requirements that were affected were (see Table 
1): Driving/steering design (1h) and Uneven floor handling - speed considerations (8a), balance and 
center of gravity (8b), escape possibilities (10c), rotations (10e), speed and position (10f), fault 
tolerance (12a), and valid software (12c). In relation to the steering (see Table 2), requirements (1h.1), 
(1h.3), (1h.4), (1h.5), (1h.6), (1h.7), (1h.10), and (1h.11) were affected.  
Now a focused bottom-up inspection was done to collect the detailed equations or decisions involving 
the longitudinal dimension. Among all the above requirements, the issues that incorporated this 
dimension, the robot activities that were found to be affected were the navigation and the ufi riding. 
The students divided the analysis into two parts accordingly. 

3.2.1 Uneven floor item riding 
In the initial robot design, while using FMEA, the students found that robot turns might cause faults 
(requirement 1h.1). The robot's dimensions and its center of rotation were the factors influencing on 
these faults. Subsequently, in step {2} of Figure 1 (detailed in Figure 2), the team decided upon small 
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robot dimensions. Changing the longitudinal dimension required revisiting previous calculations 
(Figure 5). The students calculated the distance that the castor wheel will travel for each 1º of rotation 
about the robot center and then calculated the difference between the present and previous dimensions. 

 
cml 111 = - Initial radius of rotation of the robot 
cml 132 = - Robot's radius of rotation after extending the castor wheel   

cmlx 2.0
360

112
360

2 1
1 =

××
=

××
=

ππ  - The radial distance that the robot before extending the castor 

wheel move for each 1º of rotation 

cmlx 227.0
360

132
360

2 2
2 =

××
=

××
=

ππ  - The radial distance that the robot after extending the castor 

wheel move for each 1º of rotation 

Figure 5: The robot's turns and corrections 

     
A correction to the robot direction would be performed when a deviation of 30º from the corridor 
centreline occurs. In that case, the distance difference would be ( ) cm81.02.0227.030 =−× . Unless 
addressed, this difference of less than cm1  might cause the robot to bounce.  
In addition, the ufi contribution to the inclined angle of the robot had to be fixed (requirement 1h.3). 
The relative added correction due to the distance from the center of gravity was  
( ) 135.02.02.0227.0 =− . The added correction due to the ufi incline is 25% and is caused by the 
difference between the ufi height of the higher driving wheel (3cm) and the lower driving wheel (~2.5 
cm). This difference causes the two driving wheels to travel different distances and this difference 
needs to be corrected to maintain straight line drive. The principle idea was to have the castor wheel 
on the ground (before hitting the ufi) while the front driving wheels are already located on or beyond 
the ufi top surface. Overall, the correction needed to be larger than the previous correction of the robot 
in the corridor with additional 25+13.5=38.5%. This correction was incorporated in the control rules. 
This and subsequent corrections of described herein where easily performed as their location in the 
software was easily identified because the software was developed using µP that followed ATRs.  
On the ufi surface, there are sharp changes in the driving direction and more moderate direction 
changes perpendicular to the driving direction. With a speed of 0.45 m/s, the robot drives over the first 
inclined plane of the ufi in its wider side (about 2.5cm) in a time of ssmm 055.0/45.0025.0 = . When 
the robot climbs upward, within a short time it becomes unstable. This has been experienced in the 
previous design and recorded in a way similar to the one modelled by items (12), (15), and (16), in 
Figure 3. Therefore, it was clear that there was a need for slower speed and immediate corrections. 
Similar to the experiments they did in the previous design, the students performed experiments in 
order to find the proper speed of the robot and the difference between the wheels speed for correction 
purposes, when the robot is over the ufi. The speed found to be sm /2.0 . This value changed the 
previous value in the control rules. 
The students also had to figure out how the robot is going to behave when encountering an ufi. Adding 
new hardware like low height distance sensor, a gyroscope, a compass, tilt sensor, etc., was out of the 
question because it would cause too much change and add further needed adaptations. In addition, the 
students wanted to keep the “closed world” principle of ASIT. The solution the students came out with 
was using the fact that when the robot first goes over an ufi it makes fast turn in an angle much larger 
than the usual deviation when the robot drives on a flat surface. So all it takes is to add to the 10ms 
real time interrupt routine check of the robot angle, which is basically the difference between the side 
sensors. When this difference is greater then a threshold number, the robot will go to an ufi mode with 
reduced speed and sharper correction. As soon as the difference will be less then the threshold number 
it will go to a normal operation. The common difference between the side sensors for correction in 
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normal operation was (2V-1.6V)=0.4V. The common difference between the side sensors for 
correction over the ufi was (2.4V-1.2V)=1.2V. These calculations were familiar to the students from 
the design of the robot. The threshold value was chosen to be 0.8V. This value was incorporated in the 
control rules. 

3.2.2 Navigation 
It was clear that the change in the longitudinal dimension did not change navigation along a straight 
wall because the sensors location remained intact. The only issue that had to be addressed was turning 
(requirements 1h.1, 1h.3, 1h.4, 1h.5, 1h.9). The significant change after increasing the longitudinal 
dimension was related to turns. In order to successfully execute the turn, the distance of the robot from 
the wall in front and the turn radius should be modified as presented in Figure 6. 
 

3cm

 
Figure 6: Different turns of the robot before (left) and after (right) castor wheel extension 

 
In the previous design, the students used FT to analyze the turning of the robot around corners. If the 
robot starts the turn late, its front would be close to the wall in front and while turning, its front wheel 
or castor wheel could hit this wall. If however, it starts too early, it might hit the opposite wall. The 
students made several calculations and conducted experiments for finding the range of distance to the 
wall in front that led to successful turn. They did so for several robot dimensions in order to evaluate 
which dimension to prefer.  
After the change, the students only needed to check the new dimension against their previous 
calculations, test the robot in turning and pick the range that was successful in the experiments. 
Following these experiments, they picked the threshold value for distance from front wall to be 32cm 
(49) instead of 35cm (40). Consequently, the robot would start the turn when its front side has already 
entered 3cm into the intersection (Figure 6). After finding the new threshold, the particular control 
software was easy to modify in the right place. 

4 DISCUSSION 
Change is a fundamental property of product development processes. In a competitive world, the 
ability to manage change effectively is highly desirable. This capability needs to be set as an 
organizational goal and its attainment must be planned for carefully. In this paper we presented a case 
in which the need to address change was introduced and a set of design methods were collected to 
support mechatronics design as well as change management capability. This set of methods 
complement each other, overlap in ways that allows their smooth integration into a single 
methodology. The methods are structured and simple. They provide support starting from a problem 
statement up to the detailed design of hardware and software. For every decision or sub problem, these 
methods helped organize information, explore the space, and prepare measures to address faults or 
changes.  
Maintaining a temporal record of methods utilization (e.g., as shown in Figure 1 and Figure 2) 
including all the information used, the choices made, and their reasons, allows for replaying previous 
decisions. A record of the influences between parameters (e.g., as shown in Figure 3) allows to 
identify decisions that may be influenced by design changes. Keeping organized calculations (e.g., 
Figure 5) allows quick recalculation of parameters. In addition, the use of methods such as FMEA and 
FT, allows additional inspection of the potential consequences of changes.   
The implementation of changes is also made easy by the use of ATRs. They represent basic design 
information that could easily be located and modified. By keeping the traceability between different 
refinement levels of ATRs, it is also easy to locate potentially influenced requirements that were 
missed by using the previous process. 
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Two of the methods are specifically built to support evolutionary development. µP allows moving 
between two representations (ASM and FSM) in which one (FSM) is easier for conceptualization and 
debugging and the other is easier for implementation (ASM). Similarly, FL provides support for 
evolutionary development of control strategy. Altogether, the six design methods provide diverse 
support for change management.  
The capability to manage change afforded by the methodology was demonstrated in a stressful 
situation that required fast response. Out of all the competing teams that faced the need to address the 
change, only the team analyzed in here ventured to manage it and did it well and with confidence.  
We argue that the same tools, tailored to different design contexts would provide similar change 
management capabilities. However, this generalization needs to be demonstrated in different design 
situations. One way to empirically test this generalization would be in educational settings in which 
change requests would be planned and students' responses would be analyzed.   
The applicability of the methods to industrial practice needs to be qualified as well. The design task 
described in this case study was for the team, the development of a new product. As such, the team 
generated most of the relevant knowledge for developing the product (except, for example, past 
designs that were analyzed by the team). In industry, many design projects are evolutionary 
development of previous products. Such projects have their own requirements and constraints and the 
methodology presented would create a trace of decisions from the initial requirements to the final 
product. In such cases, the methodology will assist in making changes to new design decisions. As 
time passes, additional decisions would be recorded in new product versions or through reverse 
engineering of old products, thus gradually increasing the applicability of the methodology to address 
changes.    
This study is directly related to design rationale capture techniques and the motivation that underlie 
the development of design rationale capture methods. Similarly, the process described before for 
managing this process is essentially knowledge management. Consequently, we could have presented 
the methodology as a design rationale capture or knowledge management practices.  
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