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ABSTRACT 
When using connectivity models to assess the potential impacts of component changes on other parts 
of a product, plausible inferences are readily assessed when such products are represented at the 
appropriate level of granularity to support specific queries. In this paper, we describe the development 
of a prediction algorithm, which enables coherent computations of the likelihoods of change 
propagating on several levels of detail of product description given component level change 
probabilities. The results show that a multilevel approach to change prediction supports an increased 
range of design queries beyond that achievable with a single level model. Such change prediction 
capability is useful when carrying out a comprehensive change impact assessment. 
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1 INTRODUCTION 
In order for manufacturers of complex products such as diesel engines or gas turbines to be 
competitive, existing designs are often modified to meet new requirements. When adopting such a 
strategy, it is considered good practise to assess the implications of change proposals on other parts of 
a product prior to its implementation. A probabilistic approach to identifying components for 
assessment was put forward by Clarkson et al. [1]. It involves estimating the likelihood that a 
component ‘ai’ of a product ‘P’ will affect on another component ‘ak’ directly as well as through a 
combination of effects on other components within a product as shown in Figure 1a. This assists 
design engineers in drawing attention to components which may be directly or indirectly affected by 
carrying out a design change. The practicality of this approach to addressing design queries depends 
on finding a suitable decomposition of the product in question from which relevant inferences can be 
made. 

  
(a)       (b) 

Figure 1: Representations of (a) component connectivity (b) system connectivity in a 
product 

In order to evaluate effects of change on products which consists of several thousand components, it is 
important that the product is decomposed into understandable and manageable representations of 
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interactions such that design queries can be supported at different levels of abstraction [2]. For 
example, consider the interactions between the Starter System and the Ignition System of a typical 
diesel engine. The Starter System consists of components such as a Starter Aid and a Starter Motor 
while the Ignition System consists of components such as the Fuel Injectors. The properties of the 
Starter system may change as a consequence of change to a component such as the Starter Motor. This 
change in the system properties may have significant implications on its interactions with the Ignition 
System. However, it is difficult to find a suitable product decomposition from which all the necessary 
inferences can be drawn. A system level decomposition does not support a query about effects of 
changing a component like the Starter Motor. Similarly, a component level decomposition may not 
reflect the dependency between the Starter System and the Ignition System. As such, in addition to 
assessing the likelihoods of a component ‘ai’ affecting ‘ak’, it would also be advantageous to estimate 
likelihood of systems ‘si’ affecting ‘sk’ as shown in Figure 1b as there is currently no way to compute 
system-to-system likelihood values. 
In this paper, we describe an algorithm which supports assessing the implications of change proposals 
on various levels of granularity. The modelling approach was developed as an extension to the Change 
Prediction Method (CPM), a modelling technique used to predict change propagation in complex 
design developed by Clarkson et al. [1]. The information presented in every possible view is coherent 
with the information stored in the original model. 

2  HIERARCHIES 
Describing complex products at different levels of granularity can be carried out using hierarchical 
structures. Yet while this mode of structuring has been successfully deployed in various fields, it can 
be a problematic concept [3]. In order that hierarchical structures are adapted into product connectivity 
models, it is important to identify its fundamental characteristics and analyse the implications of such 
properties on product representation.  

2.1 Hierarchical structures 
Hierarchy formation is a process of abstracting and classifying based on relations. The structure of a 
hierarchy basically represents abstract units, which have ranked relations between them. Each unit 
corresponds to nodes or levels of a hierarchy and they may be related to sub-units, based on some 
form of ranked relationship. For example the Starter Aid can be classified as a sub-unit of the Starter 
System. 
The properties of abstracted units are dependent on factors such as the particular abstraction principle. 
A generalisation/specialisation type abstraction principle may be a useful way to describe varying 
configurations of a family of engines, but it will not support description of connectivity in products. 
To attain such a goal, it is important that the structure is composed of an interaction between parts and 
wholes in a product. These are types of relation, which sometime lead to hierarchy formation between 
parts that make up an arbitrary whole. Described in many texts as part-whole or whole-part relations, 
these types of relations are very common in design. Examples of part-whole relations include 
functional decompositions, component assemblies and organisation structures 
The resulting structure of a hierarchy depends on the properties of the entity that are being abstracted 
and the relationships between entities on the nodes of the hierarchy. Simon [4] explains that complex 
systems are ‘nearly decomposable’ in that they can only be partially decomposed. While some 
interactions between component pairs are strong, there are interactions with other systems, which may 
be weak, but not negligible. Attempts to describe a product’s structure hierarchically depend on the 
strength of interactions between the components. At some threshold of complication, it becomes 
difficult to represent entities which describe relations in complex systems as trees [5]. To this end, 
breaking down product description to fit into tree structures may require that a strict decomposition 
procedure is followed.  

2.2  Need for hierarchies 
The need for hierarchies can on the one hand be expressed as a cognitive argument. It has been shown 
that humans are limited in memory capacity [6], hence some information is too complex to be 
perceived on the lowest level of granularity. For example, being able to memorise information 
regarding up to 10,000 components that are part of a helicopter is impossible for humans. Hierarchical 
structures are a way of grouping information into manageable chunks. Also, some problems need to be 
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represented in a particular level of abstraction. For example, it may be difficult to address issues of 
how the vibration of an engine affects a chassis, if such a product were as described at the level of its 
piston rings.  
On the other hand, hierarchies allow a specific view on the model or product, which can be tailored to 
the stakeholders’ needs. For example, a project manager, responsible for scheduling and costing, 
requires information on a much lower level of abstraction than a technical designer working on a 
particular aspect of a product. Furnas’ fisheye views [7] are one way of modifying a hierarchical 
structure to allow points-of-interests to be highlighted.  

2.3 Problems with hierarchies 
While hierarchical structures are necessary and useful, they are also problematic. Forming a suitable 
hierarchical structure is difficult. Also, there is no one single context for structuring a hierarchy. For 
example, consider decomposing an engine into parts in which components such as sensors belong to a 
particular assembly. The reality may be that it is more practical to categorise such a component into 
functional clusters, perhaps dedicated only to sensors, despite each sensor not necessarily being in the 
same physical assembly. Neat clusters which fall strictly within the rules of a particular decomposition 
context are not always practical.  

3 BACKGROUND 
The CPM approach to assessing likelihoods of change impacting on other components is carried out in 
a series of steps [1]. The first of these is to identify linkages between component pairs within the 
product. Each component is equivalent to a node in a network of interacting components (see Figure 
1a). The second step is to allocate the likelihoods of changes propagating between linked pairs. These 
values are based on expert opinions on the nature of interactions between components. Based on these 
direct likelihood estimates, the probability of a change to one component affecting another component 
within the product can be computed. Figure 2a shows an example of a hair dryer. The likelihood that a 
change to the power supply will affect the motor is calculated by creating a potential propagation tree 
as shown in Figure 2b. The sum of the total probabilities for each trial in this tree is the likelihood that 
change may propagate. This resulting likelihood estimate can be computed using equation 1, where 
“ρ” represents the probability value for each trail “i” on the tree. 
 

  
(a)        (b) 

Figure 2: (a) Connectivity model of a hairdryer (b) Potential propagation tree between its 
power supply and motor [1] 

( )[∏ −−=
i

i likelihood(a to b)likelihood ρ11 ] (1) 

One possible approach to assessing likelihoods of change propagating at various levels of granularity 
involves repeating the CPM approach for different product decompositions. As such, the likelihood of 
change propagating between a pair of systems such as the Starter System and the Ignition System 
discussed in Section 1 can be obtained following the same steps used for component assessments. The 
main problem with this approach is that it is difficult to ensure that likelihood estimates are consistent 
across all levels of granularity. The reason is that the initial likelihoods are obtained using heuristic 
which are prone to bias and lead to inconsistent likelihood approximations. An example of such bias in 
probabilistic judgement is the representativeness bias i.e. when probabilities are derived based on how 
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similar events are to each other. For example, the effect a change to a Starter Motor has on Fuel 
Injectors may be perceived similar to the effects a change to the Starter System has on an Ignition 
System and as a result, the frequency at which other components within the system initiate change may 
not be properly accounted for when estimating likelihoods of a system change on other systems [8, 9]. 
This drawback in this approach is in addition to the extensive effort required to build a model for each 
possible set of queries. 
The algorithm described in this paper enables consistent likelihood estimation on various levels of 
granularity within a product, but it only does so in a bottom-up manner. This is because it is more 
practical to infer higher level interaction from lower level ones without any further expert input, than 
in a top-down situation. In addition to estimates of likelihoods that change may propagate from 
component-to-component which can be derived using the original CPM approach, the system level 
descriptions enable the possibility of assessing the likelihoods of changes propagating from (1) 
system-to-components, (2) components-to-systems as well as from (3) systems-to-systems. This 
significantly increases the range of queries that can be supported with a single model and can be 
valuable when assessing the effect of change in complex products. 

4 ESTIMATING PROPAGATION LIKELIHOODS ON DIFFERENT LEVELS 
OF GRANULARITY  

In order that change propagation likelihood can be assessed at different levels of abstraction, it is 
important to account for implications of the part-whole relationship that exists between components 
and systems. To this end we distinguish between intra-system connectives and inter-system 
connectivity in products. This distinction is particularly important when estimating both system-to-
components as well as component-to-system likelihoods because each system is in itself a set of 
interacting components.  

         
  (a)          (b) 

Figure 3: (a) Intra-system connectivity (b) inter-system connectivity 

• Intra-system connectivity: this term is used to describe linkages between components within the 
same system as illustrated in Figure 3a. It is important to distinguish this type of relationship 
from an inter-system relationship to avoid introducing errors into the risk estimation process. 
For example, consider an assessment of system-to-component propagation likelihoods between 
a Fuel System and a Fuel Pump. A change to the Fuel Pump automatically implies a change to 
the Fuel System. However the converse is not necessarily true. This interaction between the 
system and the component should be taken into consideration when assessing likelihood 
estimates. 

• Inter-system connectivity: The inter-system connectivity refers to the linkages between 
components of two separate systems as shown in Figure 3b. This type of interaction implies that 
when there is a linkage between components of two separate systems, then both system nodes 
are interacting. This understanding is core to ensuring consistency across various levels of 
granularity. 

In order to assess the likelihood of change propagating on various levels of granularity within a 
product, the system-to-components, components-to-systems and systems-to-systems likelihoods can 
each assessed independently. This approach was taken so that the considerations affecting each type of 
relationship can be accounted for individually. These considerations are in addition to the factor of 
whether or not there is an intra-system or inter-system dependency between components and systems. 
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The diagram in Figure 4 represents interactions between components in two hypothetical systems A 
and B. The initiating component ai in A may cause change to propagate to an intra-system component 
ak that lies at the ‘border’ of system A which is in turn connected to a final component bj in the second 
system B.  
The combined component-to-component likelihood on the intra-system level is computed by applying 
the standard CPM algorithm as described by Clarkson et al. [1] and Section 3 only for the components 
within the system A. The link to the component in the other system B is the direct change likelihood of 
ak affecting bj. These two terms can be combined to obtain a likelihood that one component ai in 
system A affects a component bj in system B via a particular ‘border’ component ak in A (Equation 2). 
The likelihood that the initiating component ai then affects a component bj in the other system (inter-
system connectivity) via all possible intra-system ‘border’ components is given in Equation 3, which 
is simply the summation of the probabilities of the paths via all possible ‘border’ components. This 
component-to-component inter-system likelihood will be used in the following sections to explain how 
system-to-components, components-to-systems and systems-to-systems likelihoods are calculated. 

) to bkelihood(a)direct_li to aaikelihood(combined_l) to bto a(alikelihood jkkijki = (2) 

([∏
=

−−=
n

k
jkiji  to b to aalikelihood) to b(alikelihood

1

11 )] (3) 

 
Figure 4: Likelihood estimation using node link representation 

4.1 Component-to-system likelihood estimation 
Following the notation shown in Figure 4, the likelihood that a change propagates from a component 
to a system is obtained simply by adding the probabilities that a change to a component ai in system A 
will propagate to any of the components in system B (Equation 4). The likelihood of a single 
component ai in A affecting a component bj in B is equivalent to the inter-system likelihood via all 
‘border’ components that was established in Equation 3.  
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Figure 5: Estimating likelihood of change propagating from a component to a system 

4.2 System-to-component likelihood estimation 
Assessing system-to-component likelihoods is theoretically more complicated than component-to-
system likelihood estimation as the change to a system does not necessarily mean a change to all of its 
components. As a result, in addition to the probability that a component within a system may affect 
another component in a product, it is important to account for the manner in which a change within a 
system could be initiated.  
The probability that a change to a system will affect a component outside of the system is dependent 
on the chances of one or more components changing within the system. However, allocating 
probabilistic values to possibilities of initiating changes within a system introduces a chance of a non-
event. In other words, there is a mathematical theoretical probability that a system may change without 
any of its components actually changing. Such a scenario would not conform to reality, since the 
essence of a system is brought about by the existence of interacting components. The approach used to 
compute both component-to-component and component-to-system change propagation likelihoods 
could result in such non-event. In order to avoid being caught in such paradox, the algorithm assumes 
that any one component can cause change to propagate in a system as illustrated in Figure 6 and 
Equation 5.  
The system-to-component likelihood is derived using the numerical average of each component ai in A 
initiating a change to a component bj in B. This likelihood was given in Equation 3.  
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Figure 6: Estimating likelihood of change propagating from a system to a component 

4.3 System-to-system risk assessment 
The system-to-system likelihood estimation follows a similar approach to the system-to-component 
likelihood derivation. It is essentially the average of all component-to-system likelihood values which 
were established in Equation 4 (see Equation 6).  
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Figure 7: Estimating likelihood of change propagating between two systems 
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4.4 Single component systems 
There may arise a situation where a system has a single component. This may arise as a result of a 
component not belonging to any particular system per se. In practical terms, such a system is just a 
duplication of the lower component likelihood and risk estimates. 

5 PREDICTING CHANGES AT DIFFERENT LEVELS OF GRANULARITY 
The approach to estimating likelihood of change propagating described in this paper was used to 
assess the effects of change within a diesel engine. We adopted a connectivity model built in a leading 
UK automobile company [10]. At the level of granularity chosen for the model, the diesel engine 
consists of 41 components. The model contained expert estimates of the likelihood that change 
propagates between component pairs. These components were grouped into systems in order to create 
another level of granularity to assess change effects. The process is summarised in the diagram in 
Figure 8. 

 
Figure 8: Estimating change likelihood at different levels of granularity 

5.1 Product decomposition 
For this study, only one additional level of granularity was developed. However it is important to note 
the method can be repeated for descriptions at several levels whilst following the bottom-up likelihood 
estimation described in Section 4. Attaining a suitable high level product description from the existing 
model is not an entirely straightforward process and does require some negotiation. In this study, the 
product was decomposed following a similar approach to hierarchical product decomposition used in 
[11].It was important that the product was decomposed to levels which were useful for supporting 
queries during change impact assessments. As a result, care was taken to consider the “flatness” of the 
product decomposition. The relation between system and component levels can easily result in a 
structure that is too narrow or too broad.  For example, a high level description such as “engine” will 
not be practical for the intended purpose as it constitutes all 41 components. As such, any product 
breakdown which takes the form of a broad and shallow tree structure in principle, defies the aim of 
structuring change at various granularity levels. Similarly, an excessively narrow structure may also be 
inadequate for the intended purpose. 
Generally, components can be grouped in various ways depending on the context.  Each particular 
context of grouping may also be referred to as a “perspective” [12]. A set of components can be 
grouped into assemblies, modules, systems and so on. The choice of a specific perspective is 
dependent on the relation an observer is representing. There is a strong interdependence between the 
purpose and the perspective. For the purpose of our study, components were grouped into systems. All 
41 components were grouped into 10 systems. In order to distinguish between intra-system and inter-
system connectivity, only the main function of the component was considered when assigning 
components to systems. 

5.2 Change impact assessment 
Once a high-level decomposition for the diesel engine was agreed upon, likelihoods of change 
propagating from component-to-component, component-to-system, system-to-component and system-
to-system were estimated based on values from the original model. The outputs were recorded using a 
Design Structure Matrix (DSM) since it is a compact way of structuring pair wise data. In order that 
the estimated values were easily accessible, information visualisation software techniques described in 
[7] were used to restructure the matrix. This enabled quick assessments of system-to-component, 
component-to-system and system-to-system likelihood estimates. 
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Figure 9: Component level model of the Diesel Engine 

See Figure 9 for the original component-to-component likelihood matrix. In this diagram, the 
likelihoods of changes propagating between components are colour coded. High-likelihoods are shown 
in red, medium ones are represented with yellow, and low-likelihood are highlighted as green. One can 
see that this model has a high level of detail on a component level, but it is difficult to assess the 
effects of changes on a system level.  
In Figure 10, the resulting system-to-system likelihoods are given based on the computations 
described in Section 4. The component-to-system allocation used for this system likelihood 
assessment is shown in Figure 9 by the entries on the axes. The system that is most likely causing 
other components to change is the Combustion System (highlighted column), while the Control and 
Electricals System is most likely to be affected by other system changes (highlighted row). The highest 
likelihood found in the system-system matrix is from the Starter System to the Control and Electricals 
System, which is mirrored by a high component-to-component interaction of the Starting Aid affecting 
ECM (Figure 9). This shows consistency in the results.  
Further confirmation of this consistency can be seen in examples of other high-likelihood interactions 
on the component level that are also reflected on the system matrix. For example, consider the high 
component interaction from the ECM to the Fuel Pump. While at the component level, there is a high-
likelihood of change propagating between these two components, a medium-likelihood value is 
estimated on the system level i.e. Control and Electricals System to the Fuel System. The reason for 
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the reduced likelihood is the majority of the other components within the Control and Electricals 
System have a very low likelihood of causing change to propagate to the Fuel System e.g. Wiring 
Harness to Fuel Filter. As such the system level description represents the likelihood values attributed 
to changes propagating between both systems. 
 

  
Figure 10: System level model of the diesel engine 

5.3 Validation 
In the previous section, it was shown that high-risk component connections are mirrored by high-risk 
system connections. However, the likelihood values obtained through the computations described in 
Section 4 still have to be validated. 
One way to validate these values is to use values computed by the CPM algorithm that was already 
used to compute intra-system relations in Section 4 on the whole product and compare them to results 
obtained from this method. Given the component-to-component likelihood values and using 
simulations, it is possible to compute combined system-to-system likelihood values. These simulations 
essentially go through all propagation paths and count how often components that are part of a 
particular system are affected by an initiating change. Additionally, using the algorithmic approach 
from Section 4 and subsequently the deterministic CPM algorithm on the system-to-system likelihood 
values also gives combined system-to-system likelihood values. Both approaches should result in 
similar values for the combined system-to-system likelihood (Figure 11a).  
For the diesel engine model, these analyses were carried out and the results can be seen in Figure 11b. 
The x-axis of this scatter plot represents the combined likelihood values obtained from the simulation 
CPM approach and the values on the y-axis correspond to the use of the algorithm described in this 
paper in combination with the CPM algorithm on a system level. One can see that there is a high 
correlation between the two variables validating the results obtained for the system-to-system 
likelihood. The differences in the values result from the fact that simulations only produce 
approximate results. 
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                                                  (a)                                                                            (b) 

Figure 11: (a) Validation via the use of the CPM algorithm and (b) comparing combined 
system-to-system likelihood values 

6 SUMMARY AND CONCLUSIONS 
Models of product connectivity play an important role in reasoning about engineering change.  To this 
end, we have provided an approach for modelling connectivity on different levels of granularity. 
Hierarchical product decompositions (without any change propagation likelihood estimates) have been 
shown to be useful for supporting practical design queries sometimes by simply facilitating 
communications between design teams [13]. However, the techniques for propagation likelihood 
assessment discussed in this paper take the level of support a step further to include considerations 
across hierarchy levels. 
Generally, likelihood estimation at various levels of granularity is prone to all sorts of bias arising 
from human judgement and experience [14]. By simply allocating components into groups, the 
algorithm described in this paper enables consistent likelihood estimation across several levels of a 
hierarchy. This approach not only reduces the effort required for building hierarchical models, it also 
reduces the chance of error being introduced into the model once the initial component DSM has been 
created. 
Being able to assess multilevel likelihood values can give valuable insights into the product structure. 
This paper introduced an algorithmic approach to compute such multilevel likelihood values for the 
prediction of change propagation based on a bottom-up approach. It was shown how component-to-
component change probabilities can be translated into coherent system-to-system, system-to-
component and component-to-system relations allowing the assessment of change likelihood 
probabilities on all levels of abstraction.  
Although this paper focused on the application of such an algorithmic approach in change propagation 
likelihoods, the approach can be applied in many other disciplines, which have underlying 
probabilistic networks such as epidemiology. The algorithm presented in this paper would allow the 
computation of the likelihood that one particular group of people would infect another group given 
that individual infection likelihood values are known. 
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