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ABSTRACT 
Design activities need to be satisfied by several context considerations. The design data, information 
and knowledge need to be understood and interpreted by multiple context applications. Therefore, the 
organisation of those information and knowledge must be managed in a manner that all participants of 
design activities understand and share the actual meanings of the terms. An important approach onto 
design activities is to decompose the design activity into a set of processes, each of them being inter-
related and sharing and exchanging information. Ontologies are potentially very powerful tools to 
share information and knowledge among systems. A number of different definitions are available for 
the word « ontology », but all of them highlight the basic functionality of an ontology as a 
methodology for enabling a better sharing of the meaning of terms. In this paper, we propose two 
approaches based on formal ontologies, thus enabling a better organisation of the information handled 
during the design process: the first one makes use of the PSL (Process Specification Language) as a 
key-enabler for process based communications and information exchanges. The other one proposes 
methods and tools facilitating communications through model based transformation (MDA) 
approaches.  
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1.  INTRODUCTION 
Design activities need to be satisfied by several context considerations. The design data, information 
and knowledge need to be understood and interpreted by multiple context applications. Therefore, the 
organisation of those information and knowledge must be managed in a manner that all participants of 
design activities understand and share the actual meanings of the terms. An important approach is to 
decompose the design activity into a set of processes, each of them being inter-related and sharing and 
exchanging information. 
Ontologies are potentially very powerful tools to share information and knowledge among systems. A 
number of different definitions are available for the word « ontology », but all of them highlight the 
basic functionality of an ontology as a methodology for enabling a better sharing of the meaning of 
terms. Ontologies are used in several application environments; they can be classified from several 
points of view. The classification based on their expressiveness is particularly important for design 
information/knowledge management; this classifies the ontologies as lightweight or heavyweight. The 
lightweight ontologies are lacking in axioms and reasoning mechanisms. Therefore, they are limited in 
their ability to share information beyond a closed and well understood environment. On the other 
hand, heavy weight ontologies, which contain axioms and reasoning mechanisms, are capable of 
capturing the semantics of the terms and their intended meanings in a mathematically rigorous way. 
Hence, an heavyweight ontology approach is capable of defining meanings which can then be shared 
across different contexts of design. The use of heavyweight ontology methodologies for the definition 
of concepts is important for information sharing across the boundaries of different environments.  
The information and knowledge of the multiple contexts of design activities need to be supported by 
heavyweight ontologies with formal and rigorous methods. Further, the methodologies by which 
design information is defined must be explored to support those information sharing and exchanges. 

ICED’07/497 1 



This paper proposes a view of the current status of design information and knowledge sharing issues 
and discusses the potential for ontological engineering approaches based on heavyweight formal 
ontologies such as PSL, but also on MDA based approaches to provide a solution. 

2.  INFORMATION SUPPORT IN THE DESIGN PROCESS 
A wide range of information is needed to support product development decision making. Given the 
global nature of many modern companies this information must be communicated at a global level as 
individuals in a design team are likely to be based in different locations throughout the world. On the 
other hand, there is a distinct difference between information that is provided as text for user 
interpretation and information that is sufficiently structured to be interpreted by software applications. 
It is assumed that all information models provide sufficient structure to provide software support [1].      
The provision of a common shareable information environment plays a critical role in an integrated 
product development process [2]. Whilst the research needed to achieve such an environment is 
substantial, the successful achievement of such an environment offers significant potential benefits to 
system users. Product models have been recognised for many years now to be a means to the provision 
of a common source of product information to support integration and data sharing [3], they also 
provide a source and repository for information concerning a product under development. 
The issues to be resolved in information model support for product development can be raised through 
two simple questions: What information contexts are needed to support product design and 
manufacture in a global design and manufacture environment? And how can information be shared 
across these multiple contexts?  
Figure 1 below provides a general view of an information supported integrated product development 
system, highlighting the separation of the applications which support design from the information 
which they use. This is an essential aspect of integrated information systems support and offers the 
potential advantages of complete data integrity, rapid flexibility, maintainability, vendor independence 
and life cycle support.  

Company Information

Data Model Driven Life Cycle Applications

Data 
Integrity

Rapid 
Flexibility

Life
Cycle

Support
Support for

Collaborative Working
Vendor Independent

Systems  
Fig. 1: Information supported integrated product development 

The pursuit of an information supported integrated product development system raises a number of 
issues, among which: the functions supported in the product development process, the types of 
information models needed to support each function, the information structures needed to support the 
input and output of each function, the information needs to be shared between functions and the way 
of achieving this, the way of achieving flexible information systems, also readily maintained and 
updated, do information models just capture information or are some of them knowledge models and 
the way of characterising a useful set of information systems design tools. While the definition of 
appropriate system design tools and methods is an issue in integrated product development systems, 
especially in terms of requirements capture and requirement analysis, the research presented here has 
used the Unified Modelling Language (UML) to support system design and information model 
representation.  
The basic concept of information model supported product development is that any software function 
that is involved in supporting product development draws on the information models for information 
inputs and will supply its outputs into the information models. The product information for each 
application is specific to the application context. The significance of these information structures is 
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that interactions between applications are handled via the information models. The only constraint on 
the action of an application is the availability of information in the information model. Interactions 
between applications must therefore be dealt with via interactions between the information in the 

range of design views of a product, or manufacture views of a product, or 
other views as necessary.  

models.  
A product model must be able to support multiple information contexts if it is to be of real value in an 
integrated product development system. Such a model is considered to be at the heart of any such 
system as it must maintain all the key-information related to the product which is under development. 
The words ‘context’ and ‘view’ are widely used in current research papers to describe situations where 
multiple members of teams must share information. However these terms tend to be used 
interchangeably without any clear definition. According to the Oxford English dictionary context 
related to written text refers to “the parts which immediately precede or follow any particular passage 
of text and determine its meaning”. Our interpretation of this in terms of information models is that 
context provides the environment that determines the terms, activities and information. The Oxford 
English dictionary definition of view is “a particular way of considering a matter or question” and we 
follow this definition directly. Applying these definitions we consider that each phase of the product 
lifecycle provides the context for the decisions within that phase. For example in a design context a 
manufacturing engineer would view a product in terms of its manufacturability. However, within a 
manufacturing context a manufacturing engineer would view a product in terms of planning or 
scheduling. These views of information within context and their relationships, need to be understood 
and defined if information is to be clearly organised. Figure 2 shows a UML class diagram of the 
general product data structure that has been defined into which multiple information contexts can be 
constructed. This is achieved through the contexts class (e.g. design context, manufacturing context, 
… ), which can support a 

 
Fig. 2: A product data structure to support multiple contexts 

In the following sections, we will present ontology-based approaches aimed at facilitating the 
correspondences between the different models needed by the product development process. 
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3.  FORMAL ONTOLOGIES MET IN DESIGN 
Design activities need to consider several kinds of information from various sources such as 
customers, internal groups, factories, suppliers and systems. These various sources have to be used by 
several persons to make design decision. Therefore, information coming from various sources has to 
be understandable and shareable by several users. Ontologies are identified as an outstanding method 
for the information sharing. However, the definition of the word ontology is varying depending on 
applications and covers a wide range from just the taxonomy of the information of concepts to more 
rigorously defined vocabulary of terms with well defined relationships and restrictions on the domain 
semantics utilising mathematical rules and theorems. In this section, we will present some of the main 
features of the ontologies usually met in design.  

3.1 Main features 
As the integration of the different software applications used in design increases [4], developers face 
increasingly complex problems related to their interoperability [5], [6], [7]. Independent contractors 
and suppliers who collaborate on demand to bring to market new products must share product-related 
data. Legacy vendor applications that are not designed to inter-operate must now share processes. 
When enterprises collaborate, a common frame of reference or at least a common terminology is 
necessary for human-to-human, human-to-machine, and machine-to-machine communication. 
Similarly, within a core enterprise where distributed collaboration between remote sites and 
production units take place, a common understanding of business and manufacturing-related terms is 
indispensable. However, this common understanding of terms is often at best implicit in the business 
transactions and software applications and may not even be always present. Misunderstandings 
between humans conducting business-related tasks in teams, and ad-hoc translations of software 
applications contribute to the rising costs of interoperability in manufacturing.  
Ontology engineering offers a direction towards solving the interoperability problems brought about 
by semantic obstacles, i.e. the obstacles related to the definitions of business terms and software 
classes. Ontology engineering is a set of tasks related to the development of ontologies for a particular 
domain. An ontology is built on a taxonomy of concepts and their definitions supported by a logical 
theory (such as first-order predicate calculus). 
Ontologies have been defined as an explicit specification of a conceptualization [8]. Ontology 
engineering aims at making explicit the knowledge contained within software applications, and within 
enterprises and business procedures for a particular domain. An ontology expresses, for a particular 
domain, the set of terms, entities, objects, classes and the relationships between them, and provides 
formal definitions and axioms that constrain the interpretation of these terms [9]. An ontology permits 
a rich variety of structural and nonstructural relationships, such as generalization, inheritance, 
aggregation, and instantiation and can supply a precise domain model for software applications [10]. 
For instance, an ontology can provide the object schema of object-oriented systems and class 
definitions for conventional software [11]. 
Ontological definitions, written in a human readable form, can be translated into a variety of logical 
languages. They can also serve to automatically infer translation engines for software applications. By 
making explicit the implicit definitions and relations of classes, objects, and entities, ontology 
engineering contributes to knowledge sharing and re-use [9]. 

3.2 Heavy / lightweight ontologies 
The ontology community has introduced a classification based on the expressiveness of the definitions 
as lightweight, and heavyweight [12], [13]. The major difference between light- and heavyweight 
ontologies lies in the development of axioms and in the use made of those axioms.  
- Lightweight ontologies: A taxonomic structure of terms with associated definitions of concepts, 
relationships between concepts and properties that describe concepts can be called as “lightweight 
ontologies” [12], [14]. Lightweight ontologies are hardly axiomatised (Gangemi et al., 2005). 
Therefore, lightweight ontologies can only be used either by members of a community for whom the 
meaning of the terms is more or less known in advance or within a closed software domain 
environment. Even if two lightweight ontologies are defined for the same domain, but in different 
environments there is no guarantee of information sharing among those ontologies [15]. Hence, 
information sharing by utilising lightweight ontologies is limited for either a human centered or a 
closed software boundary environments. Since the design environment requires information sharing 
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across various domains and the use of multiple software tools, lightweight ontologies are generally 
considered as not very well suited to the design process.
- Heavyweight ontologies: Heavyweight ontologies are extensively axiomatised and constrained in 
addition to the components of lightweight ontologies. The purpose of the axiomatisation is to exclude 
terminological and conceptual ambiguities, due to unintended interpretations and to clarify the 
intended meaning of the terms of the ontology [12], [14]. The rigorous expressiveness of heavyweight 
ontologies can be obtained by utilising mathematical rules and theorems. Further, information sharing 
can be performed in a very flexible way with the heavyweight ontologies even in the environments of 
people with different knowledge background as well as between the boundaries of multiple software 
systems. Therefore, heavyweight ontologies provide a very powerful method for information sharing 
in complex environments such as the design environment. 
 
The PSL language presented in the following section provides a good example of an heavyweight 
ontology.  

4.  AN EXAMPLE OF A FORMAL ONTOLOGY: THE PSL LANGUAGE 
ISO 18629 PSL is aimed at facilitating interoperability of product and process information by 
providing a generic language applicable to a broad range of specific process representations in 
manufacturing and other applications [4]. PSL is an ontology for discrete processes written in the 
Knowledge Interchange Format (KIF) [16] itself an ISO candidate in (ISO/JTC1 1999), (Common 
Logic [17]). Each concept in the PSL ontology is specified with a set of definitions, relations, and 
axioms all formally expressed in KIF. Relations specify types of links between definitions or elements 
of definitions; axioms constrain the use of these elements. In addition, the PSL ontology is based on 
set theory, first order logic, and situation calculus [18]. For Grüninger, and because of this reliance on 
theories, every element in the PSL language can be proven for consistency and completeness [19].  
All parts in the standard are independent of any specific process representation or model used in a 
given application. Collectively, they provide a structural framework for interoperability. PSL describes 
what elements should constitute interoperable systems, but not how a specific application implements 
these elements. The purpose is not to enforce uniformity in process representations. As objectives and 
design of software applications vary the implementation of interoperability in an application must 
necessarily be influenced by the particular objectives and processes of each specific application. 
PSL currently aims at specifying technical processes for achieving interoperability among various 
software tool representations used throughout industrial companies. Although mappings to EXPRESS, 
XML and UML are planned in the future, PSL is not fundamentally based nor fundamentally makes 
use of Web services. As such, the approach followed, and the use of the language is different from the 
use of PSLX [20] and BPEL4WS [21]. 

4.1 Architecture and content 
PSL (ISO 18629-1, 2004 [22]) is organised in a series of parts using a numbering system consistent 
with that adopted for the other standards developed within ISO TC184/SC4. PSL contains:  
- Core theories (Parts 1x): PSL-Core, Outer Core, Duration and Ordering Theories, Resource 
Theories, Actor and Agent Theories ; 
- External Mappings (Parts 2x): mappings to EXPRESS, UML, XML and  
- Definitional extensions (Parts 4x): Activity extensions, Temporal and state extensions, Activity 
ordering and duration extensions, Resource extensions, Process intent extensions.  
Parts 1x and 4x contain the bulk of ISO 18629, including formal theories and the extensions that 
model concepts found in applications. Parts 1x are the foundation of the ontology, Parts 4x contain the 
concepts useful for modeling applications and their implementation. Table 1 presents primitive 
concepts found in PSL Core. Except noted otherwise, PSL version 2.2 is presented. 

Table 1: Concepts in PSL Core (ISO IS 18629-11) [23] 

PSL Core 
Primitives

Type Informal definitions and axioms 

activity relation Everything is either an activity, an activity occurrence, a timepoint, or an object.  
Objects, activities, activity occurrences, and timepoints are all distinct kinds of things 
(disjoint classes). 
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activity_occurrence relation An activity occurrence is associated with a unique activity.  But there are activities 
without occurrences.  

timepoint relation Given any timepoint t other than inf-, there is a timepoint between inf- and t.  Given any 
timepoint t other than inf+, there is a timepoint between t and inf+. 

object relation An object participates in an activity at a given timepoint and only at those timepoints 
when both the object exists and the activity is occurring. 

before relation The before relation only holds between timepoints.  It is a total ordering, irreflexive, and 
transitive relation. 

occurrence_of relation Every activity occurrence is the occurrence of some activity and associated with a 
unique activity. 

participates_in relation The participates_in relation only holds between objects, activities, and timepoints, 
respectively. 

beginof function The beginning of an activity occurrence or of an object are timepoints. 
endof function The ending of an activity occurrence or of an object are timepoints. 
inf+ constant Every other timepoint is before inf+. 
inf- constant The timepoint inf- is before all other timepoints. 

 
- Core Theories (Parts 12 - 15): The core theories are based on first-order logic ; they model basic 
entities necessary for building the PSL extensions. The PSL Core and Core Theories pose primitive 
concepts (those with no definition), function symbols, individual constants, and a set of axioms written 
in the language of PSL. Core theories are required to formally prove that extensions are consistent 
with each other, and with the core theories. The core theories are at the root of the PSL ontology 
against which every item that claims to be PSL compliant must be tested for consistency.  
- Domain-specific Definitional Extensions (Parts 41 - 45):  The extensions to the Core and Outer-
core are the constructs used in PSL to represent processes in an application. The Core and Outer Core 
alone are not sufficient to meaningfully represent the semantics of applications for the purpose of 
interoperability. They are necessary but have little expressivity by themselves. All terms in the 
extensions are given definitions using concepts specified and axiomatised in the Core theories. This 
ensures that definitional extensions are conformant to PSL. A software application will typically use 
the concepts defined in the extensions.   

4.2 Organising design information through the use of PSL     
It is important to note that the terms defined in PSL are generic process related definitions and do not 
directly describe manufacturing processes [24]. The language provides an underlying rigorous basis 
which can used to provide non-ambiguous definitions for manufacturing processes and so there is a 
need to develop a dictionary of manufacturing process terms, based on PSL, which can be used to 
relate directly to manufacturing process information sharing.  For example we can define a hole 
drilling process in PSL as follows: 
 
(forall (?occ) 
 (implies  (occurrence_of ?occ DrillHole) 
    (exists (?occ1 ?occ2) 
   (and (occurrence_of ?occ1 Drilling) 
    (occurrence_of ?occ2 CentreDrilling) 
    (min_precedes ?occ2 ?occ1 DrillHole))))) 
 
This provides us with a rigorous way of semantically defining a machining process for a hole. 
However, given the various contexts against which we can consider a hole there is still a need to be 
able to represent a hole from a given context. For example, a different semantics may need to be 
defined for each of the following contexts:  

• Functional context   => Purpose of the hole, surface finish, tolerances 
• Geometry context    => Dimensions of diameter and depth  
• Manufacturing context   => Generic manufacturing method 
• Machining process context  => Specific processes such as drilling, boring 
• Assembly context    => Tolerances, fit requirements 

 
In this case not only does the semantics need to be defined but the relationships between the contexts 
need to be understood. The limitations of text based ontologies for the information organisation have 
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to be identified and we have to propose the use of mathematical rigorous foundation ontologies for the 
semantic definition of multiple contexts and their relationships. Further, libraries of influencing 
contexts and their relationships for the foundation ontologies can be defined based on enhanced PSL 
and UML methods. The utilisation of foundation ontologies for the information organisation that 
supports the interoperability is shown in figure 3 below. 
 

Semantic definitions:
Libraries of part families, features, materials, …
Process knowledge: machining, assembly, …
Relationship knowledge: machining-assembly; part family -
feature

Foundation ontologies and methods: PSL ++, UML2

Design for manufacture
context

Design for machining
context

Design for assembly
context

other

 
Fig 3: An information organisation based on foundation ontologies for interoperability 

Another important use of formal ontologies is provided by the MDA approach: this approach is the 
subject of the following section. 

5.  AN APPLICATION OF FORMAL ONTOLOGY: THE MDA APPROACH    
The MDA (Model Driven Architecture) defines an approach to IT system specification that separates 
the specification of system functionalities from the specification of the implementation of this 
functionality on a specific technology platform [25]. MDA defines a model architecture through the 
development of a set of guidelines for structuring specifications expressed as models [26]. The MDA 
approach and the standards that support it allow the same model functionality to be achieved on 
multiple platforms through auxiliary mapping standards, or through point mappings to specific 
platforms. It also allows different applications to be integrated by explicit relations between their 
models, thus enabling the integration, the interoperability and the evolution of supporting systems. 

5.1 Basic concepts 
Model-Driven Architecture begins with the idea of separating the specification of the operation of a 
system from the details of the way the system uses the capabilities of its platform [27]. MDA provides 
an approach for, and enables tools to be provided for: specifying a system independently of the 
platform that supports it, specifying platforms, choosing a particular platform for the system and 
transforming the system specification into one for a particular platform. The primary goals of MDA 
are portability, interoperability and reusability. The MDA concepts are presented in terms of existing 
or planned system. This system may include anything: program, single computer system, some 
combination of parts of different systems, federation of systems each under separate control, people, 
enterprise, federation of enterprises… The discussion focuses on the software tools within the system.  
A model of a system is a description or specification of that system and its environment for a given 
purpose. A model is often presented as a combination of drawings and text. The text may be expressed 
in a modelling language or using a natural language. MDA is an approach to system development. It 
increases the power of models. It is model-driven because it provides a means for using models to 
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improve the understanding, design, construction, deployment, operation, maintenance and 
modification. 
The architecture of a system is a specification of the parts and connectors of the system and the rules 
for the interactions of the parts using the connectors [28]. Model-Driven Architecture prescribes 
certain kinds of models to be used, how those models may be prepared and the relationships between 
the different kinds of models. A viewpoint on a system is an abstraction technique using a selected set 
of architectural concepts and structuring rules, in order to focus on particular concerns within the 
system. Here ‘abstraction’ means the process of suppressing selected detail to establish a simplified 
model. Concepts and rules may be considered to form a viewpoint language. A platform is a set of 
subsystems and technologies that provide a coherent set of functionalities through interfaces and 
specified usage patterns, which any application supported by that platform can use without concern for 
the details of how the functionality provided by the platform is implemented. 
This architecture defines a hierarchy of models from three different points of view: the Computation 
Independent Model (CIM), the Platform Independent Model (PIM), and the Platform Specific Model 
(PSM) [29].  
The computation independent viewpoint focuses on the environment and the requirements of the 
system; the details of the structure are hidden or not yet defined. The platform independent viewpoint 
focuses on the operation of a system while hiding the details necessary to a particular platform. A 
platform independent view shows the part of the complete specification that does not change from one 
platform to another. A platform independent view may use a general purpose modelling language, or a 
language specific to the area in which the system will be used. The platform specific viewpoint 
combines the platform independent viewpoint with an additional focus on the detail of the use of a 
specific platform by a system. 

5.2 Model transformation 
Model transformation defines the process by which a model is converted to another model of the same 
system. The MDA process shows the role the various models (CIM, PIM and PSM) play within the 
MDA framework. A transformation tool takes a CIM and transforms it into a PIM. A second (or the 
same) transformation tool transforms the PIM into PSM. The transformation tool takes one model as 
input and produces a second model as output. Generally speaking, a transformation definition consists 
in a collection of transformation rules, which are unambiguous specifications of the way (a part of) 
one model can be used to create (a part of) another model. Based on those observations, it is possible 
to define transformations, transformation rules and transformation definitions [30], such as: 
- transformation: automatic generation of a target model from a source model, according to given 
definitions ; 
- transformation definition: set of transformation rules that together describe how a model can be 
transformed from the source language into a model in the target language ; 
- transformation rule: description of how one or more constructs in the source language can be 
transformed into one or more constructs in the target language. 
The main transformations are [26]: 
• PIM to PIM: transformation used when models are enhanced, filtered or specialised during the 

development lifecycle without needing any platform dependent information. One obvious 
mapping is the analysis of design models transformations. PIM to PIM mappings are generally 
related to model refinement or model refactoring. 

• PIM to PSM: used when the PIM is sufficiently refined to be projected onto the execution 
infrastructure. The projection is based on the platform characteristics. Describing these 
characteristics is done using a UML description (and eventually a profile for describing 
common platform concepts) within a Platform Description Model. The translation from a 
logical component model to a commercial existing component model is a kind of PIM to PSM 
mapping. 

• PSM to PSM: transformation needed for component achievement and deployment. For 
example, component packaging is done by selecting services and preparing their configuration. 
Once packaged, the components delivery could then be done by specifying initialisation data, 
target machines, container generation and configuration, etc. PSM to PSM mapping are 
generally related to platform dependent model refinement. 

• PSM to PIM: transformation required for abstracting models from existing implementations in 
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a particular technology into a platform-independent model. This procedure often resembles a 
"mining" process generally hard to make fully automated. It may be supported by tools. Ideally, 
the result of this mapping will match the corresponding PIM to PSM mapping. 

There are several kinds of model transformation approaches: an interesting classification, based on 
design features, has been developed by Czarnecki and Helsen [31]. 

5.3 Application of the MDA approach to the design process 
Figure 4 below shows a range of types of information supporting design for manufacture decisions. 
This information needs to be brought together to support design decisions. Past design decisions can 
be obtained from best practice methods, but this information is complex and influenced by many other 
kinds of information. We have focused here on the organisation of best practice methods into three 
kinds as design, manufacture, and service best practice methods to support the decisions on design for 
manufacture, design for service and other design activities. We have explored the information 
organisation particularly through two significant ways in which best practice methods can be captured; 
features and part families.  
 

Design for
Manufacture

Decision
Making

Design
Requirements

Materials

Manufacture
Resource
Availability

Business
Constraints

Best Practise
Manufacturing

Methods

Supply Chain
Capabilities

 
Fig. 4: Multiple kinds of information met in design 

From our evaluation of the range of information needed for the capture of best practice methods we 
can design a class structure: Figure 5 below shows the top-level of the organised information for best 
practice methods based on feature and part family libraries represented in Unified Modelling 
Language (UML) notation.  
Figure 5 proposes that best practice design, manufacture, and service methods can each be organised 
based on feature and part family libraries to support decisions. It also shows that best practice methods 
may be influenced by requirements, materials, business constraints, supply chain capabilities, and 
resources. However, it does not show the range of interdependencies which may constrain the 
relationships. For example, if we consider the required material information for a turbine blade of 
aircrafts in design, manufacture, service, and design for manufacture contexts may vary as follows: 

• Design: Material properties to withstand high forces, stresses, and tip speed. Surface 
hardening may be required to withstand stresses and forces ; 

• Manufacture: Manufacturability of fan from required material to required size. Shot 
peening method may be used to harden the surface ; 

• Service: Serviceability such as the applicability of HVOF (High Velocity Oxy Fuel) 
coatings for the durability ; 

• Design for manufacture contexts:  this phase depends on the selected material and 
process;  the geometry may require modifications. For example, if the shot peening 
process method selected to harden the surface, on Nickel material part requires the 
chamfer more than 0.3 mm while the Titanium part requires more than 0.5 mm chamfer. 
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BestPracticeDesignMethods BestPracticeServiceMethods

DesignDecisions

ManufactureDecisions

ServiceDecisions

BestPracticeManufactureMethods

Decisions is a

is a

is a

ResourceAvailability

DesignRequirements

BusinessConstraints

Materials

SupplyChainCapabilities

BestPracticeMethods Support

Influence

Constraint

Constraint

Influence

Influence

is a is a

is a

PartFamilyLibrary

organised

FeatureLibrary

organised

 
 

Fig. 5: UML schema of the top-level information for best practice methods based on 
feature and part family libraries  

The complex relationships between contexts are shown in figure 6 below. The information content is 
not the same for these contexts, but the information system needs to be designed to support each set of 
requirements. Further, this problem exists at many different levels. For example, with the 
manufacturing phase, machining, assembly, and inspection each have their own information 
requirements. We therefore need significantly improved modelling methods if we are to successfully 
organise information to capture the range of information needs, their relationships and constraints.  
However, the traditional UML class diagrams do not readily support the representation of multiple 
context information and their relationships. One potentially attractive methodology proposed by the 
Object Management Group (OMG) is UML-2 which provides an Object Constraints Language (OCL) 
[32] to apply context constraints to objects instances. UML-2 is a part of MDA approach, which aims 
to tackle the context dependencies and semantic problems. 

6. DISCUSSION - ISSUES 
A real test case has been developed by the Task Group (TG2) of the INTEROP Project, with the aim 
of providing a model-driven method that could guide enterprises in using enterprise models to 
generate Enterprise Software Applications (ESA) as automatically as possible, and more particularly 
to parameterise Enterprise Resource Planning (ERP) systems. This research focused on the difficulties 
enterprises face to generate ESA from enterprise models and how a model-driven approach could 
provide a useful way to solve them, while enabling interoperability at the same time. The Task Group 
also developed different enterprise models [33] for the case study, at different levels of abstraction and 
a first set of experiences of model transformations at the vertical level. 
Based on this work, a first method to parametrise ERP from enterprise models using model 
transformations in a vertical approach has been proposed [34]. The approach proposed focused on 
establishing an interoperability model enabling model transformation between CIM into PIM level not 
only in a vertical way but also horizontaly, with as many ontology models (ontologies) as necessary. 
Fig. 7 shows the evolution of the initial idea of TG2 towards the use of only one ontology model. At 
this stage the objective of the work is to provide an interoperability model (meta-level) that can be 
connected to the parameterisation of ERPs using the Model Driven Interoperability approach. 
Current developments made by the authors focus on the integration of concepts provided by the PSL 
language into the MDA approach, thus facilitating, through the use of a sound and well-defined 
ontology-based approach, the research of correspondences between the different ontologies applicable 
to  the numerous activities of the design process. 
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Fig. 6: complex relationships between different contexts 
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Fig. 7: Model Interoperability: vision targeted by the TG2 [29] 
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