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ABSTRACT  
The rapid expansion of the cyber-infrastructure has resulted in a wealth of data that previous 
generations of product designers could only dream of. It is now possible to obtain real-time data at all 
points in the product lifecycle. But without an organized framework for gathering, analyzing and 
making design decisions with it, this information goes to waste. This paper presents a method for 
tapping into this data without being overwhelmed by it. An ideal case study is product design for cost-
effective compliance with product take-back laws. A previously developed constrained optimization 
model indicates that data from sources throughout the product lifecycle can be used make better 
design decisions regarding component reuse and remanufacture which simultaneously decrease cost 
and increase customer satisfaction. However, computational issues previously limited the analysis to a 
single set of static, industry average values for model inputs. Real-world implementation requires 
dynamic input from a variety of widely distributed data sources, ranging from material suppliers to the 
customer. However, existing computer programming methods that efficiently utilize widely distributed 
data are limited. This paper makes advances on two fronts. First, a decision model is presented which 
effectively utilizes distributed data sources regarding both cost and customer preferences. Second, the 
system is made fault tolerant by using the existing distributed shared memory infrastructure which 
involves the concepts of replicated data and quorums. Case study results indicate that information 
from distributed sources can be efficiently acquired using multiple replicas of data and a probabilistic 
read and write, leading to improved customer satisfaction. 

Keywords: Product take-back, distributed data, optimization, tradeoff decisions 

1 INTRODUCTION 
It is now possible to obtain real-time data at all points in the product life-cycle, from conceptual 
design, prototyping, materials acquisition, supply chain, manufacturing, assembly, inventory, point-of-
purchase, consumer use and disposition. This data conveys a wealth of up to date information, 
including costs and customer preferences. It could potentially be used to design better products, but its 
sheer volume can overwhelm a designer. Two things are needed; an analytic framework for 
determining which data are relevant and for using the data effectively during the design process, and 
also a computational approach to gathering, storing, and transmitting data among distributed sources. 
This paper presents a solution to these problems, and employs a design for product take-back case 
study. The next section provides background on the case study and on the computational approach 
employed, followed by an illustrative example. The final section presents results and discussion. 

2 BACKGROUND  
This section provides a brief background on related research in product design related to take-back 
legislation, and introduces the design model on which this paper expands.  Product take-back laws 
have been enacted in the European Union and Japan. In the United States, twenty four states have 
active or pending product take-back legislation. For example, the Waste Electrical and Electronic 
Equipment (WEEE) directive sets the target of recovery and reuse at 75% by weight of post-use home 
appliances and computer products [1]. Similarly a target of 85% recovery and 80% recycling by 
weight was set for end-of-life vehicles [2]. These laws aim to “internalize the externalities” to some 
degree by making the manufacturer and/or consumer responsible for recovery and possible reuse.  

ICED’07/475 1 



Designers1 need to consider post-use alternatives during the product design process in order to comply 
with take-back legislation cost-effectively. Several such models have been developed. Ferrer [3] 
presents a case study on personal computers which demonstrates that remanufacturing computers is a 
viable option. Sandborn and Murphy [4], present a model for incorporating economic and 
environmental issues into product design. Campbell and Hasan [5] present a model for determining the 
feasibility of recycling by tracking disassembly and monetary gain for recyclers. Bhamra et al., [6], 
demonstrate the potential benefits of component level reuse and remanufacturing.  
Models discussed so far are limited as they employ industry average static data. Real life applications 
include dynamic data inputs from various sources. Incorporating these inputs into the decision models 
is the next logical step in long range product portfolio planning. However, limited computational 
capabilities have restricted research in this area.  In this paper we propose a model to make product 
decisions incorporating dynamic data input from distributed sources. The model is formulated in such 
a way that it is fault tolerant and highly available.  
The work on which this paper builds [7], [8], combines environmental impacts with cost and reliability 
into a long range product planning model shown in Figure 1. Starting from the upper left and moving 
clockwise around Figure 1, upon take-back, 88 components of one product are analyzed, and four 
possible decisions are made about each component for a second lifecycle. The possible decisions 
include using a new component, reuse, remanufacture, or recycle.   
 

 
Figure 1: Design Optimization for Component Reuse, Remanufacturing or Recycling 

 
The eight operations shown in Figure 1 are then considered for their resulting cost, environmental 
impact and product reliability. Four market segments are considered, so the designer can create the 
optimal set of products that meet the specific preferences of each segment, and simultaneously exploit 
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their willingness to pay for various features. Market segmentation is a powerful tool for characterizing 
the preference distribution of the population in general. While it would be impractical to document and 
cater to the preferences of individual customers, dividing them into a manageable number of segments 
was shown to improve total customer satisfaction. Total portfolio utility over several market segments 
and lifecycle is then maximized. Further work [9] indicated that adopting leasing as a business model 
gave the designer greater control over the take-back process, and improved the optimal solution. 
 

3 DISTRIBUTED DATA  
The data sources of interest to our model are widely distributed. They fall into two general categories. 
The first is data that has system-wide implications, such as updated material and manufacturing 
process cost parameters. The second category is customer-specific preference information. Both data 
types are widely distributed and change dynamically. It is important to periodically recompute the 
solution to the optimization problem with the latest values of the parameters. 
We want the data to be available, even in case of failures in the computer network. A well-known 
approach (e.g., [10]) to providing highly available shared data in computer systems is to use 
replication: for each logical (or virtual) piece of data, there are actually multiple copies of it, stored at 
various locations in the network.  An obvious cost of replication is the use of additional storage. 
The potential benefits of replication are increased reliability, since there is more than one copy (so if 
one copy becomes unavailable, say because the computer hosting the copy crashes or because that part 
of the network is partitioned from another part), as well as the ability to access a copy that is close by, 
thus saving on communication costs. However, in order to realize these benefits, a protocol for 
keeping the copies consistent is needed, and thus induces additional costs, most notably additional 
communication costs. 
A relatively recent approach to reducing the communication costs associated with replicated data is to 
use probabilistic quorums (a quorum is a subset of copies out there) [11].  This method reduces the 
communication cost, but causes read accesses to the shared data to return out-of-date information with 
a small probability.  Lee and Welch [12] explored applications that could tolerate infrequent out-of-
date information while exploiting the benefits of the probabilistic approach to replicated data. We 
propose using this approach to collect, distribute, and maintain the data sources needed for the design 
optimization problem. 
In more detail, our proposed system architecture is the following.  We have a collection of computing 
entities (processes), which communicate with each other by passing messages over a network.  We 
will have software running on top of this message passing system that implements a set of shared 
variables using probabilistic quorums, in order to gain the benefits discussed above (increased 
availability and fault-tolerance). 
Some of the processes monitor a data source (such as a remanufacturing facility updating processing 
costs) whereas others perform the computation to solve the optimization problem.  Each data source 
writes the current value of its parameter into a unique shared variable whenever the value changes. 
(Reminder: at the lower layer, this "write" causes messages to be sent to the processes hosting a 
certain subset of the replicas designated for this virtual shared variable.)  When the optimization solver 
decides it is time to (re)compute the solution, it reads all the data sources.  (Reminder: at the lower 
layer, each such "read" causes messages to be exchanged between the solver process and the processes 
hosting a certain subset of the replicas.) 
With high probability, the values read from the data sources using this software layer are the most up-
to-date values.  However, even if they are not up-to-date, in this application the impact on the optimal 
solution is expected to be minimal since the data of concern, such as remanufacturing cost estimates, 
are not expected to change significantly over very short time periods. This application can tolerate 
stale data while taking advantage of the benefits. 

4 DISTRIBUTED DATA AND DESIGN DECISION MODEL 
This section further builds upon the model for sustainable design introduced earlier [8]. The model 
employed industry average values for all parameters. Computational limits restricted the application to 
static inputs implementable on a single personal computer. Real world applications, however, require 
dynamic inputs from widely distributed data sources. Rapid expansion in computing and database 
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systems in recent years has resulted in a wealth of data. Keeping this in mind, this paper extends the 
model in various ways: 
1. Linking the distributed data sources shown in Table 1 (columns 1 and 2) directly into the design 

decision model. 
2. Updating the distributed data.  
3. Reformulating the design model to accommodate widely distributed data that is being 

continuously updated, as shown in column 3. 
4. Making the data sources fault tolerant by replicating them and using the quorums to reduce the 

cost of replication. 
 

Table 1. Distributed data sources, their information and integration in design model 

Distributed 
Database Source 

Types of Information Decision Model Integration 

Material Supplier Updated cost and availability of 
materials 

Costs of components updated 
accordingly 

Component 
manufacturer, 
Assembler 

Updated cost of manufacturing and 
assembly  

Costs of manufacturing and 
assembly updated, cost of 
component updated 

Product take-back 
center operations 

Updated information on time and 
expense of performing different 
operations 

Updated collection, disassembly, 
remanufacture costs 

Product take-back 
center: Wastewater 

Updated wastewater treatment 
requirements 

Updated disposal costs, 
Environmental Impacts 

Customer Preferences, willingness to pay Objective function attribute 
scaling factors 

 
 
Once the products are collected from the customers, four post recovery decisions at the component 
level can be made, defined as follows: 

• New: The recovered component(s) cannot be reused at all and must be disposed. A second 
generation product would have a new component in place of the old one. 

• Reuse: The recovered component(s) can be directly reused after minor cleaning and 
refurbishment. 

• Remanufacture: The recovered component(s) requires some rework (such as milling) 
before it can be reused in the second generation product. 

• Recycle: Although the recovered component(s) cannot be reused in its current form, 
materials (metal, plastic) can still be cost effectively extracted and reformed. 

 
Each of the decisions described above will in turn have different operations associated with it, as listed 
in Table 2. These operations have different costs and environmental impacts for different components 
depending on the material used, weight and ease of disassembly. Moreover, performance of the next 
generation product will also be determined in part by these operations. 
 

Table 2. Operations associated with four post recovery decisions 

New Reuse Remanufacture Recycle 
Collection 

Disassembly 
Disposal 

Material processing 
Manufacturing 

Assembly 

Collection 
 

Collection 
Disassembly 

Remanufacturing 
Assembly 

 
 

Collection 
Disassembly 

Recycling operations 
Manufacturing 

Assembly 
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4.1 Design Optimization Formulation 
The decision model we employ is presented in equations 1-9. The major elements are described in the 
following paragraphs, starting with a description of the constraint equations 2-4, which embody the 
cause and effect relationships between design decisions and the resulting component attributes of cost, 
perceived age, and environmental impact. These three attributes are determined by the decision that 
was made regarding its use after take-back. Let di denote the binary design decision variable such that: 
 

d1 = 1, if the component is new, 0 otherwise. 
d2 = 1, if the component is reused, 0 otherwise. 
d3 = 1, if the component is remanufactured, 0 otherwise. 
d4 = 1, if the component is recycled, 0 otherwise. 
Subject to:  14321 =+++ dddd

 
Constraint equation 2 gives us the cost of a product for a particular customer segment p based on the 
component level decisions for that segment. Overall product cost is the summation of costs associated 
with each individual component. The cost of each component is determined by the costs incurred 
while performing individual operations involved in manufacturing. In the case of a new component, 
for example, the recovered component would have to be collected, disassembled and disposed before 
new material is utilized to manufacture the component. This gives us: 
Cost of a component = d1 (Cost of new component) + d2 (Cost or reused component) + d3( Cost of 
remanufactured component) + d4(Cost of recycled component)   
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Where: 
C1,i = New material acquisition costs for component i . 
C2,i = Manufacturing/forming or remanufacturing costs for component i. 
C3,i = Assembly costs for component , a function of the processing time required to assemble component i. 
C4,i = Take-back costs for component i incurred by the manufacturer under product take-back legislation. 
C5,i = Disassembly costs for component i, a function of the time to disassemble the product. 
C6,i = Remanufacturing costs (inspection, testing, and repair or replacement) for component i. 
C7,i = Cost of recycling operations for component i, a function of the energy required to melt the material. 
C8,i = Disposal costs associated with placement in a landfill for component i. 
E1,i = Environmental impact resulting from the transport of materials to the facility for materials processing. 
E2,i = Environmental impact of manufacturing operations. 
E3,i = Environmental impact of assembly operations. 
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E4,i = Environmental impact due to the collection and transportation for take-back purposes. 
E5,i = Environmental impact of disassembly and separation processes. 
E6,i = Environmental impact of remanufacturing operations including inspection, testing, and repair. 
E7,i = Environmental impact of recycling operations including melting down used material. 
E8,i = Environmental impact of disposal in a landfill. 
p = Customer group (1 = Neutral, 2 = Technophile, 3 = Utilitarian, 4 = Green) 
s = number of components in the product. 
ti = number of years component i to be installed has been in use before. 
Kp = Normalizing constant for customer p. 
kC,p = Scaling constant corresponding to cost for customer p. 
kA,p = Scaling constant corresponding to age for customer p. 
kE,p = Scaling constant corresponding to environmental impact for customer p. 
fp = Fraction of customers of type p. 
vi = Criticality associated with the ith component. 
R = Reliability function for the computer based on the component reliabilities and failure mode assumed. 
R  = Reliability function for the computer based on the component reliabilities and failure mode assumed when 
all components are the same age. 
θi = Characteristic life of the component i. 
bi = Slope of the Weibull reliability curve for component i. 
d1,i,p = Fraction of components of type i the are new for customer type p. 
d2,i,p = Fraction of components of type i the are reused for customer type p. 
d3,i,p = Fraction of components of type i the are remanufactured for customer type p. 
d4,i,p = Fraction of components of type i the are recycled for customer type p. 
 
Equation 3 shows how the individual ages of components are aggregated into the perceived age of the 
whole product. The model allows for components that are recovered from/utilized in the same product 
to have different ages. Age (rather than reliability) is used as a measure of performance because it is 
easier for customers to relate performance to age rather than physical reliability. This is important in 
the case of electronic components, since they become obsolete quickly. It also simplifies finding the 
overall product attributes from those of individual components as discussed below. Age of a collected 
component is given by how long the customer owned it before it was returned. If a component is 
reused or remanufactured after collection, its reported age would be how long it has been in the market 
before. On the other hand if a new or recycled (manufactured from recycled materials) component is 
supplied it would have an age of 0 years. In practice, however, products made from recycled 
components perform slightly worse than new, and remanufactured components perform slightly worse 
still. To account for these we assume that recycling recovers 90% (and not 100%) of the value while 
remanufacturing recovers 50% of the value of the component. This gives us: 
Age of a component = (d2 + 0.5d3 + 0.1d4) (Time the component has been in use)         
To find the overall perceived age of the product, first the product reliability is found using the failure 
mode information. The failure mode we assume is when any of the critical components (motherboard, 
hard drive or video card) fail, or any three of the other components fail simultaneously. A reliability 
function, R (equation 3), is created using this failure mode information to map the age of the 
components to product reliability. Once the ages of the components are known, the product reliability 
is found and mapped back to the same function when all the components are assumed to be the same 
age. Finding this inverse gives the age of the product aligned with that of a product that has never been 
disassembled (all components are the same age). 
Equation 4 shows how the total environmental impact is calculated from the environmental impacts of 
each operation performed on each individual component. For example the bulk of the environmental 
impact when a component is reused is its collection and transportation. On the other hand when a new 
component is to be manufactured, the recovered component would have to be collected, disassembled 
and disposed before new material is utilized to manufacture the new component. The environmental 
impacts of the operations are summed to arrive at the environmental impact of the component: 
EI of a component = d1 (EI of new component) + d2 (EI or reused component) + d3(EI of 
remanufactured component) + d4(EI of recycled component) 

4.2 Objective Function  
The objective function shown in equation 1 maximizes the sum of overall utilities of all the customer 
groups. Market segmentation is defined on the basis of the customers' preference for a certain attribute 
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over others. The preference for an attribute is reflected in the scaling constant one typically assesses 
during the standard lottery method. The values can also be determined from surveys of customers 
returning the products. In the case study that follows, this is implemented using a randomly chosen 
sample of customers. The different groups are defined as follows: 

 

Table 3. Market segmentation based on relative preference for attributes 

Customer group Preference relation 

Technophile ),max(25.1 envcostage kkk ≥  

Utilitarian ),max(25.1 envagecost kkk ≥  

Green ),max(25.1 agecostenv kkk ≥  

Neutral Everyone else 
 
The classifications shown above are mutually exclusive and collectively exhaustive. In this study we 
also account for the relative number of customers of a certain type in the population. This is calculated 
by finding the fraction of customers of each type in the chosen sample size. The fractions are 
extrapolated using the overall demand to find how many products of a certain type are needed. 
Different utility functions for the customer groups are also defined. The utility functions for the range 
of values of an attribute that a customer is willing to buy the product are assumed linear. The 
acceptable ranges for individual customer segments are also acquired from surveys of customer 
returning the products. When combining the ranges acquired from different customers, 90% 
confidence intervals are used assuming upper and lower bounds are normally distributed. This was 
done to avoid being overly influenced by customers that provide extreme bounds. 
Once the acceptable attribute ranges and scaling constants are known, utilities for each customer group 
can be calculated. The overall utility for each customer group considers the combined cost, age and 
environmental utilities of that group.  In order to reflect the dynamic nature of willingness-to-pay as 
one moves through the feasible region, multiattribute utility analysis is used to compute the overall 
utility of the product portfolio. The multiplicative form of the multiattribute utility function is used. 
The utilities for different groups are aggregated using a linear additive function using the fractions of 
customers of each type.  In equation 1, fp’s, where p = 1,2,3,4 are the fractions of neutrals, 
technophiles, utilitarians and greens in the customer base. The decision problem is to maximize this 
weighted utility over the customer groups with component level decisions as decision variables. The 
authors recognize the difficult issues involved in the aggregation of utility. In this case, we assume the 
group members and range of outcomes are such that the difficulties are minimized. 
 

5 CASE STUDY  
As mentioned earlier, replication allows for highly available data which is essential in cases where 
some of the servers are busy or not available. In this section we provide a case study to show how 
shared memory can be used in a product take-back environment.  

5.1 System architecture and formulation    
The system architecture is shown in Figure 2. Five distributed data sources provide information about 
the product attributes (manufacturing facilities, indicated in green) and customer preferences 
(indicated in red). The designer (manufacturer) reads from the shared memory the data provided by the 
distributed sources. The computations that follow aim at solving the optimization problem that 
maximizes total portfolio utility of the customers. The decisions are whether to reuse, remanufacture 
or recycle a recovered component or simply discard it and replace it with a new one. The customer can 
also read and perform an optimization to find the best reuse decisions. 
Each data source writes the current value of its parameter into a unique shared variable whenever the 
value changes. This write causes messages to be sent to the processes hosting a certain subset of the 
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replicas designated for this virtual shared variable. When the optimization solver decides it is time to 
compute the solution, it reads all the data sources.  This read causes messages to be exchanged 
between the solver process and the processes hosting a certain subset of the replicas. 
 

 
Distributed data sources 

 
Figure 2: Schematic of the shared memory implementation for distributed data sources 

 
We want to ensure that that the values read from the data sources are the most up-to-date values with 
high probability.  However, even if they are not up-to-date they need to have a very high probability of 
being from the immediately previous time stamp. Our argument is that it would not affect the results 
significantly since the attributes (cost and environmental impact) do not drastically change over a short 
period of time. If we store each shared variable at 36 replicas and have a quorum size of 10 (so that 
each read or write only accesses 10 randomly chosen of the 36 replicas), the probability of reading an 
outdated value is 0.02. In order to guarantee that we never get stale data, with 36 total replicas, we 
would have to access at least 19 replicas in each read or write, so we are realizing a savings of about 
50% in the communication cost by using a quorum size of 10. Furthermore, comparing with data in 
Lee and Welch, [12], we estimate that the probability of getting a value that is outdated by more than 
one timestamp is essentially 0.  
In our case study we simulate the evolution of data over ten time periods. The costs include those 
incurred in acquiring raw materials and the manufacturing and/or remanufacturing operations shown 
in Figure 1. To investigate the effect of stale data acquired from the shared memory, costs of 
electricity, and raw materials like metals and plastics were updated using historical trends. Costs of 
performing individual operations like remanufacturing, recycling etc. on components were decreased 
steadily by 5% in every cycle. This was done to depict improving manufacturing methods and 
economies of scale as remanufacturing volume increases. In all, 25 entries are subject to updating each 
cycle, 15 of which correspond to the raw materials and 10 correspond to costs associated with 
processing and manufacturing/remanufacturing operations. Environmental impacts resulting from each 
operation were calculated using commercially available software Simapro. 
The acceptable ranges of attributes that were assumed for the three customer groups are shown in 
Table 4. We can see that technophiles perceive cheap products as having low reliability (greater age) 

Designer/ 
Manufacturer

Shared data memory

Probabilistic Write Probabilistic Read followed by 
computation 

Cost  

New component manufacturer. Environmental Impact 

Age  

kcost

kenv

kage

Reuse facility 

Remanufacturing facility 

Recycling facility 

Customer 
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therefore have a high minimum cost of $400 which they are willing to pay. Similarly, the utilitarians 
are only interested in low cost alternatives while environmentally conscious green customers have a 
wide range of cost ($100 - $1000) they are willing to pay. Technophiles also require high performance 
(lesser age) in their products and therefore would not accept products that are perceived to be older 
than 1 year. Utilitarians on the other hand require most value for their money. Green customers have a 
low upper limit of environmental impacts compared to the other customer groups at 600 millipoints. 
Neutrals are assumed to have preferences that lie between those of other customers and do not focus 
on any one specific attribute. 

Table 4. Feasible attribute ranges for each customer group 

Feasible attribute ranges 
Customer Group Cost 

max,min, ppp CCC ≤≤
Age 

max,min, ppp AAA ≤≤
Environmental Impact 

max,min, ppp EEE ≤≤  
Technophiles $400 - $1000 0 – 1 yrs 333 – 1275 mpt 
Utilitarians $100 - $600 0 – 2 yrs 333 – 800 mpt 

Greens $100 - $1000 0 – 3 yrs 333 – 600 mpt 
Neutrals $100 - $1000 0 – 3 yrs 333 – 800 mpt 

 
Each customer segment's willingness to make tradeoffs is captured by the scaling constants shown in 
Table 5. Technophiles are willing to tradeoff low cost and low environmental impact for better 
performance (low age). Utilitarians and Greens on the other have high scaling constants associated 
with cost and environmental impact respectively. The neutral customer group assigns an equal scaling 
constant value of 0.5 to each attribute. The individual attribute utility functions are assumed to be 
linear and the ranges within which they are defined are kept constant. The fractions of technophiles, 
utilitarians, greens and neutrals (fp’s) in the entire customer base are assumed to be 0.1, 0.4, 0.1 and 
0.4 respectively. These fractions are used to combine the multiattribute utilities of individual customer 
groups into a total product portfolio utility. In summary, the optimization problem is to find the 
decision variables corresponding to reuse decisions (new, reused, remanufactured or recycled) that 
maximize the multiattribute utility of the product portfolio as given by equation 1. 

Table 5. Independent scaling constants and normalizing parameter 

Independent scaling factors Customer 
Group Cost Age Environmental 

Impact 

Normalizing 
Parameter, Kp

Technophiles 0.30 0.80 0.10 -0.596 
Utilitarians 0.70 0.45 0.35 -0.794 

Greens 0.15 0.15 0.85 -0.562 
Neutrals 0.50 0.50 0.50 -0.764 

 

5.2 Results    
Figure 3 shows the optimal portfolio utility over 10 reads of the data for two cases. The "perfect 
information" plot (square shape) shows utility as the cost of raw materials and operations involved in 
reusing, remanufacturing and recycling change. This plot assumes the designer has continuous access 
to the most up to date, perfect information. The "with probabilistic quorums" plot (diamond shape) 
results from a simulation of the shared memory implementation for distributed data sources described 
earlier, allowing the possibility of stale data. Any of the values in each cycle could be outdated, 
providing stale information. As calculated before for a quorum size of 10 with 36 replicas of variables, 
the probability of getting an outdated data value (from an immediately preceding timestamp) is 0.02. 
The results illustrate that the calculated utilities are very close to those based on perfect information. 
Figures 4 and 5 show the optimal cost and performance (age) for the neutral customer group. As 
before, the square shapes depict results based on perfect information, and diamond shapes depict 
results using probabilistic quorums which allow a small probability of stale information. It can be 
clearly seen that the perfect information and probabilistic quorum values are very close for both cost 
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and age. The decrease in cost of the computer is attributable to the manufacturer realizing economies 
of scale as time progresses.  
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Figure 3: Comparing the maximized utility computed with 1) probabilistic quorums 
(information that has a small probability of being stale, and 2) perfect information. 
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We just demonstrated that allowing a small probability of stale information does not affect the results 
substantially. One may be tempted to think that further reduction in communication costs could be 
realized if we make the probability of getting stale information even higher (by making the quorum size 
smaller). To demonstrate that this could lead to suboptimal decisions we could compare the results from 
two cases: 1) Quorum size is large enough so that perfect information is available every iteration and 2) 
Quorum size is so small that the information is practically not updated at all. One way of doing this 
could be to compare the decisions from the first and final iterations, as shown in Table 6, which shows 
that the optimal decisions have changed substantially for the four customer groups.  
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Figure 5: Age of the computer for the optimal configuration for the neutral customer 
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Table 6: Maximized portfolio utility and corresponding decisions in the first and final 
iterations  

 First Iteration  Final Iteration 
 Tech Utilitarian Green Neutral  Tech Utilitarian Green Neutral 

Monitor Reuse Reuse Reuse Reuse   Reuse Reuse Reuse Reuse 
Floppy Drive New Recycle Reuse New   Recycle Recycle Reuse New 

Keyboard New Recycle Reman. Recycle   New Recycle Reman. Recycle 
Hard Drive New Recycle Reuse New   New Recycle Recycle New 
CD-ROM Recycle Recycle Reman. Recycle   Recycle Recycle Reman. New 

Motherboard New Reuse Reuse Recycle   New Reuse Reuse Recycle 
Power Supply Recycle Reuse Reuse Reuse   Recycle Reuse Reuse Reuse 
Sound Card Reman. Recycle Reman. New   New Recycle Reman. New 
Video Card Reuse Reman. Reuse New   New New New New 

Modem Recycle Reuse Reman. Reuse   Recycle Recycle Reman. New 
Cables Recycle Reman. Reman. Recycle   Recycle Recycle Reuse Recycle 

Housing Recycle Recycle Recycle Recycle   Recycle Reuse Reuse Recycle 
                   

Cost ($) 547.72 184.8 170.11 391.84  565.99 183.21 173.96 372.28 
Age (years) 0.02 1.6 2.98 0.22  0.03 1.59 2.61 0.16 
Env. Impact 

(mpt) 926 610.5 537.7 657.4  921.3 607.7 544 659.5 

          
Utility 0.92 0.70 0.32 0.75  0.91 0.71 0.32 0.77 

                   
 Portfolio utility   Portfolio utility 

 
 

0.706  0.711 
    

0.92 0.70 0.33 0.76 
 

Portfolio utility 
Effect of applying the decisions from the first iteration when data has 

changed. 

0.710 
 

Elements highlighted in yellow indicate differences in the optimal decision variables. In addition, the 
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product portfolio utility has increased from 0.706 to 0.711. If the decisions were prescribed using 
information from only the first cycle (no updating) there would be a decrease in utility as shown. Even 
though there is improvement compared to the first cycle because the cost decreases, it is not optimal for 
the most current data, as shown. 

 

6 SUMMARY   
Our results show that updating information frequently helps designers make better decisions. We also 
demonstrated that a small probability of obtaining outdated information did not affect the results 
substantially. It was seen that a shared memory approach can be easily used for data that does not 
change drastically over a short period of time. The deviations from the assumption of perfect 
information were shown to be minimal. Information acquired using multiple replicas of data and 
probabilistic read and write results in reduced communication costs. By using a quorum size of 10 
instead of 19 (which would guarantee up-to-date information) we reduced communication costs by 
about 50%.  Having multiple copies of data also allows for robustness against partial system failure. It 
was also demonstrated that reusing components reduces cost and environmental impacts over several 
product lifecycles. In the case where only small components are replaced with new ones, performance 
can be improved with little effect on cost and environmental impact. As manufacturers devise better 
ways to reuse and remanufacture components, they can compete effectively by introducing selected 
new components, as demonstrated in our case study. 
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