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ABSTRACT 
For the purpose of evaluation, a NURBS curve is used, because it is commonly used in the areas of 
CAD・CAM and Computer Graphics.  A curve with a monotone radius of curvature distribution is 
considered as a fair curve in the area of Computer Aided Aesthetic Design (CAAD).  But no official 
standards have been established.  Therefore, a criterion for a fair curve is proposed.  The designed 
curve is assumed fair if the variation of radius of curvature is followed by either linear, quadratic, or 
cubic algebraic functions for the same number of control points and knot sequences of the knot vectors.   
Using these three algebraic functions as specified radius of curvature distributions, a curve shape 
modification algorithm based on these specified radius of curvatures is applied.  The sum of the 
squared difference between the radius of curvature of the curve and the specified radius of curvature of 
an entire curve is linearized by Taylor’s theorem, then minimized.  If the similarity of the original 
curve is very close to one of the three shape modified curves, it can be judged that the original curve is 
designed according to the designer’s intention, which is one of the three radius of curvature 
distributions.  This measured similarity expresses fairness to the fair curve.   

Keywords: Curve shape modification, fair curve, radius of curvature specification, correlation 
matching, fairness evaluation  

1 INTRODUCTION 
In Computer Aided Aesthetic Design, designers evaluate the quality of a designed curve by looking at 
its curvature or radius of curvature plots.  If the quality of a designed curve does not meet the 
designer’s demands, they usually modify the control points of the curve interactively.  If the variation 
of the radius of curvature of the curve is monotone, this curve is considered to be a fair curve [1].  But 
the definition of a fair curve is ambiguous and no official standards are given.  Therefore, in this paper 
we have tried to establish criterion for a fair curve.  For a curve fairness evaluation measurement, 
radius of curvature distribution is used as an alternative characteristic of a curve.  Evaluation of 
whether the designed curve is fair or not is accomplished by comparing of the designed curve to a 
curve whose radius of curvature is monotone.   
A NURBS curve, which is commonly used in the field of CAD･CAM and Computer Graphics, is used 
as an expression of a freeform curve.  Three types of NURBS curves were considered.  They are the 
quadratic, cubic, and quintic NURBS curves.  A quadratic NURBS curve is expressed as a quadratic 
curve by using its weights.  In this study, a quadratic curve is not used to express the shape of a fair 
curve.  Therefore, the weights of a quadratic NURBS curve are not used.  A cubic NURBS curve is 
also widely used, but in this study, radius of curvature ranging over multi segments of a NURBS 
curve are modified based on the specified radius of curvature.  A smooth radius of curvature 
continuity is needed.  Therefore, a quintic NURBS curve is used in this study.  It is assumed that no 
inflection points exist on a quintic NURBS curve. 
There are many related works for generation of a fair curve dealing with knots.  These are knot 
insertion [2, 3], knot removal algorithm for B-spline curves [4], knot removal algorithm for NURBS 
curves [5], and fair curve generation by knot value and weight modification [6]. 
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There are many related works for generation of fair curvature distribution.  A fair curvature 
distribution algorithm by modifying knot spacing [7, 8], and by removing and reinserting knots [9-13] 
have been published. 
Fair curve generation algorithms related to curvature by modifying the control points have been 
published.  These make monotone curvature [14], use a clothoidal curve for specifying the curvature 
[15], and automate a curve fairing algorithm for B-spline curves [16, 17].  Fair curve generation 
algorithms related to energy function have been published.  These are smoothing of cubic parametric 
splines by energy function [18], finding the unfair portion of a curve using energy function [19], and 
introducing a low-pass filter to energy function [20].  Fair curve generation algorithms related to 
curvature by specifying curvature distribution have also been published [21].    
There are many related works for evaluating similarities of polygons in two dimensional space, 
especially in the area of image processing.  Methods for evaluating similarities, which are based on the 
distances of corresponding points on polygonal curves, have been reported [22-25].  If the distances 
are close, it will be determined that the two polygonal curves are similar.  Methods using Fourier 
descriptors for evaluating similar polygons have been developed and implemented [26, 27].  One is to 
retrieve the image files using Fourier descriptors.  The other is to classify the characters expressed by 
polygonal curves.   
Section 2 of this paper describes a quintic NURBS curve, the first derivative of a quintic NURBS 
curve, curvature vector, curvature, and radius of curvature.  In section 3, NURBS curve shape 
modification based on the specified radius of curvature is described.  Section 4 describes the 
correlation matching to evaluate the similarity of the NURBS curves.  Section 5 describes fair curve 
expression and fairness evaluation giving examples.  A criterion for a fair curve is proposed. 

2 NURBS CURVE EXPRESSION 
A quintic NURBS curve is used in this study.  The objective of freeform curve design is to design the 
framework of surface patches.  Surface patches are defined as tensor products, which are bi-variate 
and normally defined by u  and v .  In other words, one knot sequence in u  direction, and another knot 
sequence in v  direction are defined despite the complexity of the surface patches.  Therefore, knot 
spacing is fixed in this study. 
A quintic NURBS curve consists of 5n -  segments ( 6)n ³  is composed of n  control points such as 

, , ,0 1 n-1q q q and n  weights such as 0 1 1, , , nw w w -  as in Eq.(1). 
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where ( ) ( ),6 0,1, , 1iN t i n= -  are NURBS basis functions. 
These functions are recursively defined by knot sequence 0 1 5, , , nt t t +  as in Eq.(2). 
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where 0,1, , 1i n= -  and M = 2,3, ,6 . 
The basis functions are defined by the de Boor-Cox [28] recursion formulas.  If the knot vector 
contains a sufficient number of repeated knot values, then a division of the form 

( ) ( ), 1 1/ 0 / 0i M i M iN t t t- + - - =  (for some i ) may be encountered during the execution of the recursion.  
Whenever this occurs, it is assumed that 0/0 = 0 [29].    
Curvature vector is expressed by Eq.(3). 
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where ( )tR  is the first derivative of a NURBS curve, and ( )tR  is the second derivative of a NURBS 
curve.  Curvature is the magnitude of the curvature vector, therefore curvature is expressed as in 
Eq.(4). 
 ( ) ( )t tk = κ                                          

(1) 

(2) 

(3) 

(4) 
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By definition, the curvature of a plane curve is non-negative.  However, in many cases it is useful to 
ascribe a sign to the curve [30].  The choosing of the sign is commonly connected with the tangent 
rotation (in moving along the curve in the direction of the increasing parameter):  The curvature of the 
curve is positive when its tangent rotates counter-clockwise, the curvature of the curve is negative 
when its tangent rotates clockwise. 
Radius of curvature is the reciprocal number of curvature, therefore, radius of curvature is expressed 
as in Eq.(5). 
 ( ) ( )

1t
t

r =
κ

      

3 NURBS CURVE SHAPE MODIFICATION BASED ON THE SPECIFIED 
RADIUS OF CURVATURE 
A method to modify a NURBS curve shape according to the specified radius of curvature distribution 
to realize an aesthetically pleasing freeform curve is described in this section.  The difference 
between the NURBS curve radius of curvature and the specified radius of curvature is minimized by 
introducing the least-squares method. 
If the radius of curvature to the perimeter is linear, curvature distribution will be parabolic.  On the 
contrary, if the curvature to the perimeter is linear, the radius of curvature distribution will be 
parabolic.  Radius of curvature is suitable for our use because it corresponds to our visual 
recognition of the shape of the curve.  In a case where the curve shape is very close to a straight line, 
the radius of curvature becomes infinity. Also, at the point of inflexion, curvature value becomes zero.  
Therefore, radius of curvature value becomes infinite.  For these reasons, the radius of curvature value 
is converted to curvature value for computation.   
The concept of radius of curvature specification and a NURBS curve shape modification based on the 
specified radius of curvature is shown in Figure 1.  A NURBS curve and its radius of curvature plots 
are shown in Figure 1(a).  The modification of the shape of the NURBS curve shown in Figure 1(a) to 
that shown in Figure 1(b) is examined.  Radius of curvature plots shown in Figure 1(a) are drawn 
perpendicular to the curve using straight lines.  The length of the line is proportional to the radius of 
curvature at the spot on the curve.  However, the straight lines are not parallel to each other and the 
beginning points of the individual straight lines are different.  Therefore, the curve with a radius of 
curvature display is suitable to examine the variation of radius of curvature as a whole.  However, it is 
not suitable to examine the length of the straight line and variation of radius of curvature visually. 
Therefore, considering the parameter of the NURBS curve is different from the perimeter of the curve, 
the perimeter of the NURBS curve as a straight line is set to the horizontal axis, and radius of 
curvature is set to the vertical axis as shown in Figure 1(c).  Then, the radius of curvature distribution 
to the perimeter is drawn.  After this, specified radius of curvature is superimposed on the current 
radius of curvature distribution.   
As an example, the linear algebraic function as a specified radius of curvature specification is shown 
in Figure 1(c).  Coefficients of this linear function are calculated by introducing the least-squares 
method using the current radius of curvature distribution.   
The i th of radius of curvature distribution of a perimetrically represented NURBS curve is denoted ir , 
the specified radius of curvature at the same spot is denoted ˆir , the difference id  is shown by Eq.(6) 
and is illustrated in Figure 1(c). 
 

1 2 1 2 ˆ( , , , , , )x x y y
i i n n iq q q qd r r- -= ××× ××× -   

where 0,1,2, , 1i m= ××× - , m  is number of the specified radius of curvature, and n  is the number of 
NURBS curve segments plus 5 which is the degree of the curve. 

1 2 1 2( , , , , , )x x y y
n nS q q q q- -× ×× ×× ×  which is the sum of the squared differences for all specified radius of 

curvatures in Eq.(7) is minimized by introducing the least-squares method.  The radius of curvature 
expression is non-linear.  Therefore, by Taylor's theorem, Eq.(7) is linearized as in Eq.(8). 
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To minimize Eq.(8) is achieved by equating to zero all the partial derivatives of   
1 1( ,x xS q q+ D ,× × × 2

x
nq - +  

2 1,x y
nq q-D 1 ,yq+D ,××× 2

y
nq - + 2 )y

nq -D  with respect to x
rqD  and y

rqD ( 1,r = 2, × × × , 2)n -  as in Eq.(9). 
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Using these simultaneous linear equations, x
rqD  and y

rqD  ( 1,2, , 2)r n= ××× -  are calculated.  Then, x
rq , y

rq  
are determined. 
A reverse computation technique is applied to solve this problem.  This kind of study on the radius of 
curvature, or the curvature to realize a fair curve is called a constrained non-linear minimization 
problem [31].  For computation, ir  and ˆir  are calculated based on the perimeter.  Then, the perimeter 
used is converted to the parameter to calculate the position of the control points of the NURBS curve.  
Next, a NURBS curve is generated.  The total length of the curve which is the perimeter is calculated 
and rescaled as 1.  Repeating these operations, positions of the control points of the NURBS curve are 
determined while id ( 0,1, , 1)i m= ××× -  are minimized for the entire perimeter. 
Using the above mentioned method of a linear algebraic function to specify the radius of curvature 
shown in Figure 1(c), radius of curvature distribution is changed to the one shown in Figure 1(d), 
while modifying the shape of the curve.  The dotted line shown in Figure 1(d) is a linear algebraic 
function specifying the radius of curvature distribution shown in Figure 1(c).  It is visually recognized 
that the radius of curvature distribution of the shape modified curve shown in Figure 1(d) matches the 
specified radius of curvature. 
 
 
 
 
 
 
 
 
 
        

(a)                                      (b)                                     (c)                                     (d) 
Figure 1. Concept of radius of curvature specification and NURBS curve shape modification based on 
the specified radius of curvature 
(a) : current NURBS curve and its radius of curvature plots 
(b) : shape modified NURBS curve and its radius of curvature plots 
(c) : difference between current radius of curvature and specified radius of curvature 
(d) : radius of curvature of shape modified NURBS curve 
        and specified radius of curvature (same as in (c)) 

4 CORRELATION MATCHING FOR SIMILARITY EVALUATION 
In this section, correlation matching for similarity evaluation is described.  Radius of curvature 
distribution is used as an alternative characteristic of the shape of the curve to evaluate a designed 
curve.  Discrete values, which are radius of curvature to the perimeter of the reference, and the 
matching curve are considered as the components of two multi dimensional vectors.  Similarity is 
evaluated by the dot product of two vectors.  Two NURBS curves are shown in Figure 2(a) and 2(b).  
These curves can hardly be distinguished apart by just looking at their graphs.  But if the radius of 
curvature plots are drawn for both, the difference between the two curves is recognized immediately as 
shown in Figure 3(a) and 3(b).   
Radius of curvature is plotted using straight lines drawn outward from and perpendicular to the curve, 
with the line length proportional to the amount of radius of curvature at that spot.  Curve shape is 
judged by looking at the lines coming out from the curve and seeing how their lengths change along 
the path, not along the parameter.  Therefore, radius of curvature to the perimeter is drawn to evaluate 
the similarity of the curve shape as shown in Figure 4(a) and 4(b). 

(9) 

current NURBS curve 

radius of curvature plots 

· Point marks indicate 
knot position. 

radius of curvature plots 

shape modified NURBS curve 

· Point marks indicate 
knot position. 

ˆir
id

ir
O perimeter 1

ra
di

us
 o

f c
ur

va
tu

re
 

radius of curvature 
of current NURBS curve 

specified radius of 
curvature 

O perimeter 1

ra
di

us
 o

f c
ur

va
tu

re
 

radius of curvature 
of modified NURBS curve 

specified radius of 
curvature 



ICED’07/119  

Figure 2. Two NURBS curves 
 

Figure 3. Two NURBS curves with 
radius of curvature plots 

 

 
 
 
 
 
            · Point marks indicate knot position.  
 
 
 
 
 
 
            · Point marks indicate knot position. 
 
 
 
To adjust the various lengths of the curve perimeters, the total length of the perimeters and radius of 
curvature are rescaled as 1.  A perimeter must be calculated according to the knot sequence of the knot 
vector. 
Discrete values ( 1,2,3, )nc n m= ××× shown in Figure 4(a) which are radius of curvature to the perimeter are 
considered as the components of m  dimensional vector for curve A, denoting a .  In the same manner, 
discrete values ˆnc shown in Figure 4(b) are considered as the components of m  dimensional vector for 
curve B, denoting b . 
Similarity between curve A and curve B is evaluated by Eq.(10).  

S ×
=

a b
a b

 

Because curve perimeter and radius of curvature are rescaled as 1, and perimeter is calculated 
according to the knot sequence of the knot vector, the similarity is evaluated independent of location, 
orientation such as rotation and reflection, and the size of the curves.  The evaluated similarity 
between curve A and curve B shown in Figure 4 is 0.996792. 
 

5 FAIR CURVE EXPRESSION AND EVALUATION OF FAIRNESS 
In this section, fair curve expression and evaluation of fairness are described.  As a measure of curve 
fairness evaluation, radius of curvature distribution is used as an alternative characteristic of a curve.   
A curve with a monotone radius of curvature distribution is considered as a fair curve in the area of 
Computer Aided Aesthetic Design [32].  But no official standards are given.  Therefore, criterion for a 
fair curve is tentatively proposed. 
The shape of a NURBS curve is defined by the number, the location of its control points, and the knot 
sequence of the knot vector.  The designed curve is assumed fair if the variation of radius of curvature 
is monotone for the same number of control points and knot sequence of the knot vector.  
First, radius of curvature distribution of the designed curve is calculated to examine the fairness of the 
curve.  Algebraic functions such as linear, quadratic, and cubic are applied to the radius of curvature 
distribution of the designed curve by introducing the least-squares method.  Then applying the curve 
shape modification algorithm based on the specified radius of curvature distribution, the radius of 
curvature distribution is modified according to these three algebraic functions respectively. 
These radius of curvature distributions given by these three algebraic functions are considered 
monotone, because the independent variable of these algebraic functions is monotone to the 
corresponding dependent variable of these functions.  Therefore, curves designed in this manner are 
considered fair.  These judgements are performed by evaluating the similarity technique described in 
the previous section.  This similarity is evaluated by using the radius of curvature distribution 
according to three algebraic functions used as references and the radius of curvature distribution of the 
designed curve as a match. 
It is considered that the highest similarity reveals that this curve is designed to have this radius of 
curvature distribution, and the similarity measured is considered as the fairness of the designed curve.  

(b) curve B (a) curve A 

(b) curve B (a) curve A 

(10) 

Figure 4. Radius of curvature distribution of two 
NURBS curves 
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As an example of a fair curve generation and fairness evaluation, a NURBS curve and its radius of 
curvature distribution to the perimeter are shown in Figure 5. 
 
 
 
 
 
 
 
 
               
Figure 5. Designed curve and its           Figure 6. Radius of curvature distribution and a given algebraic  
radius of curvature distribution                          function such as linear, quadratic,  

and cubic to specify radius of curvature 
 
Algebraic functions mentioned above are applied to the radius of curvature distribution shown in 
Figure 5 by using the least-squares method.  Then, the coefficients of these three functions are 
calculated.  These three functions are determined as the specified radius of curvature.  These are 
shown in Figure 6 together with the radius of curvature distribution shown in Figure 5.  Applying the 
curve shape modification algorithm based on these three algebraic functions to the designed curve, the 
shape of the curve is modified.  Afterwards, setting these three radius of curvature distributions as 
references and the radius of curvature distribution of the designed curve as a match, three similarities 
are evaluated.  The similarities evaluated are summarized in Table 1.  In Table 1, similarity expresses 
the fairness of the curve.  In addition to Table 1, the similarity expressed in degree is summarized in 
Table 2.  From Table 1 and Table 2, the designed curve whose radius of curvature is shown in Figure 5, 
is judged to be designed so that the radius of curvature distribution will be cubic.  Then, the fairness of 
this curve is evaluated as 0.996082. 
 

Table 1. Fairness of the designed curve evaluated in cosine 
 Linear Quadratic Cubic 

Radius of curvature 
shown in Figure 5 0.989403 0.994786 0.996082 

 
Table 2. Fairness of the designed curve evaluated in degree 

 Linear Quadratic Cubic 
Radius of curvature 
shown in Figure 5 3.86192 2.70623 2.49432 

 
Giving eight sample curves, fairness is examined.  Eight designed curves and their radius of curvature 
distributions are shown in Figure 7 (a), (b), (c), (d), (e), (f), (g), (h), and are labeled curve A, B, C, D, 
E, F, G, H respectively. 
Applying the three algebraic functions to the radius of curvature distributions of these eight curves 
respectively, the radius of curvature distributions corresponding to these three algebraic functions are 
generated.  If the radius of curvature is negative, it is considered that this algebraic function is not 
applicable.  The original radius of curvature distributions of eight designed curves and that of modified 
curves based on the specified algebraic functions are shown in Figure 8. 
The similarity is evaluated by using the radius of curvature distribution according to these three 
algebraic functions as references and the radius of curvature distribution of the eight designed curves 
shown in Figure 7 as matches. 
The radius of curvature distributions given by these three algebraic functions are considered monotone.  
Therefore, it is also considered that the curves with monotone radius of curvature distribution are fair.  
So, the similarity evaluated is considered fairness.  The fairness of eight curves shown in Figure 7 is 
summarized in Table 3. 
The similarity measured using Eq.(10) is expressed in cosine.  To distinguish the small differences, 
the similarity is expressed in degree and summarized in Table 4. 
From Table 4, it is recognized that curve B is designed so that its radius of curvature distribution will 
follow quadratic function as shown by the yellow hatching.  Notice that the fairness of curve B is 

NURBS curve 

ra
di

us
 o

f c
ur

va
tu

re
 

1 0 perimeter 

ra
di

us
 o

f c
ur

va
tu

re
 

1 0 perimeter 

quadratic 

linear 
cubic    



ICED’07/119  

evaluated as 0.999420.  It is also visually recognized that curve B’s radius of curvature distribution fits 
to that of quadratic as shown in Figure 8(b).  In addition to this, it is recognized that curve F is 
designed so that its radius of curvature distribution will follow quadratic function as shown by the 
green hatching.  The fairness of curve F is evaluated as 0.990694.  But it is recognized that curve C, D, 
G and H are designed according to the designer’s unique intention as shown by the red hatching. 
As mentioned above, fairness of the designed curve is proposed by a similarity evaluation technique 
using the radius of curvature distribution.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                          
 
 
 
 
 
                   
 
 
 
                       
 
 
 
                    
 
 
 
 
                  
 
 
 
 

Table 3. Fairness of the designed curves evaluated in cosine 
 A B C D E F G H 

Linear 0.952451 0.966819 0.781774 0.816568 0.923317 0.969153 0.804327 0.729839 
Quadratic 0.985327 0.999420 0.938154 - 0.987085 0.990694 - 0.917646 

Cubic 0.986855 0.999398 - - 0.989634 - - - 
 

Table 4. Fairness of the designed curves evaluated in degree 
 A B C D E F G H 

Linear 17.739571 14.800924 38.576668 35.257306 22.584137 14.268186 36.454733 43.127084 
Quadratic 9.827210 1.951571 20.256155 - 9.218513 7.822708 - 23.415688 

Cubic 9.300208 1.988754 - - 8.256947 - - - 

･point marks on the indicate knot position 
 Figure 7. Designed curves and their radius of 

curvature distributions 
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Figure 8. Radius of curvature distribution of individual 
curve and the radius of curvature corresponding to 
linear, quadratic, and cubic functions 
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6 CONCLUSIONS 
A quintic NURBS curve, the first derivative of a quintic NURBS curve, curvature vector, curvature, 
and radius of curvature are described.   
A method to modify NURBS curve shape according to the specified radius of curvature distribution to 
realize an aesthetically pleasing freeform curve is described.  The difference between the NURBS 
curve radius of curvature and the specified radius of curvature is minimized by introducing the least-
squares method.  A reverse computational technique is applied to solve this problem.  This kind of 
study on the radius of curvature, or the curvature to realize a fair curve is called a constrained non-
linear minimization problem. 
Correlation matching for similarity evaluation is described.  The values of radius of curvature to the 
perimeter are considered as the components of a multi dimensional vector for the curve.  Similarity 
between two curves is expressed by normalizing the dot product of two vectors.  Curve shape 
similarity evaluation is tried using an example. 
A curve with a monotone radius of curvature distribution is considered as a fair curve in the area of 
Computer Aided Aesthetic Design.  A criterion for a fair curve is proposed.  Evaluation whether the 
designed curve is fair or not is accomplished by a comparison of the designed curve to a curve whose 
radius of curvature is monotone.  The radius of curvature is specified by linear, quadratic, and cubic 
function using the least-squares method. 
The fairness of a curve is evaluated by using the similarity of the radius of curvature distribution. 
If the similarity of the original curve is very close to one of the three shape modified curves, it can be 
judged that the original curve is designed according to the designer’s intention, which is one of the 
three radius of curvature distributions.  This measured similarity expresses the fairness of the fair 
curve.   
In the future, we are planning to establish a definition of a fair curve using further curve data that will 
be gathered. 
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