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Abstract 
In today’s world of engineering design, two key properties govern decisions, i.e. uncertainty 
and multiple decision criteria. In the scope of this paper, a method based on Monte Carlo 
simulation is proposed to evaluate and improve multi-criteria decisions under uncertainty in 
engineering design. This is based on determining the effects of a decision and characterizing 
these using probability distributions and probabilities of occurrence. Depending on the value 
of influences, the resulting probability distribution for the decision criteria will be different. 
The proposed method based on Monte Carlo simulation allows the user to evaluate and 
improve the alternatives of a decision. Each alternative is characterized as a set of 
influence/value combinations. It is shown how the method has been implemented at a 
manufacturer of semiconductor equipment to support decisions in modular product 
development. 
 
Keywords: Decision-support, uncertainty, robust design, Monte Carlo simulation. 
 
Introduction 
In this section, the fundamental characteristics of decisions in engineering design are shown 
up. The require a paradigm shift from optimization to satisficing. The requirements for a 
decision support method to operate within this environment are elaborated on. 
 
Characteristics of Decisions in Engineering Design 
The number of stakeholders of decisions in engineering design continues to increase. No 
longer are decisions made in a single location. Engineers increasingly work in distributed 
teams across multiple R&D sites in different countries and continents [1]. With the advent of 
mass customization [2], companies are also striving to suit to the tastes of individual 
customers. Finally, companies are increasingly making use of product families and platforms 
[3] in order to make use of economies of scale across multiple products. The result of all these 
tendencies is an increasing number of criteria to be considered in making decisions in 
engineering design. 
The above tendencies also increase uncertainty. As a result of the increasing number of 
different stakeholders, customers, and products, the number of potential changes that may 
occur in the life cycle of a product is increasing. The environment that a product is designed 
into is more and more uncertain. 
In the above-described, optimization is only feasible for decisions of very limited scope. The 
assumption of all optimization methods is that the underlying optimization model is 



 308

sufficiently close to reality to serve as a basis for decision making. As known from nonlinear 
control theory [4], a complex system may jump between multiple modes of operation. In 
optimization, however, you “optimize” for a single state of operation without considering that 
this represents no accurate model of reality. Not only are the results of optimization false, 
they are even misleading and dangerous. The more a system is optimized, the more it 
becomes specialized towards a particular mode of operation and fragile in all others. Also, 
optimization requires all alternatives being measured with one common utility function. This 
requirement cannot be fulfilled in a multi-faceted environment. That is why we need to move 
from optimization to satisficing (Figure 1) as recognized by Simon. “We cannot within 
practicable computational limits generate all the admissible alternatives and compare their 
respective merits. Nor can we recognize the best alternative, even if we are fortunate enough 
to generate it early, until we have seen all of them. We satisfice by looking for alternatives in 
such a way that we can generally find an acceptable one after only moderate search.” [5] 
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Figure 1. Paradigm shift from optimization to satisficing. 

 
Consequently, there is a need for a method allowing the decision maker to find such an 
acceptable alternative. 
 
Requirements for a Decision Support Method 
A decision support method for satisficing should fulfill the following requirement. 
• Allow the assessment of alternatives based on multiple decision criteria: The decision 

support method should allow assessing different alternatives within a decision based on 
multiple identified decision criteria. 

• Help improve alternatives according to the decision criteria: Unlike optimization, 
satisficing is more than just choosing one solution among a set of alternatives. It is about 
considering multiple alternatives and improving one or several of them until all decision 
criteria reach satisfactory levels. That is why a decision support method should not only 
allow the comparison of different alternatives by how they perform on various criteria. 
It should also help improve alternatives. 

In fulfilling the above two functions, the method should also have the following 
characteristics. 
• Be quantitative: In our view mathematics, is a clear – possibly the only clear – language 

to transmit and process information. That is why a method to handle information in 
decision making should preferably be mathematic and therefore quantitative. 

• Incorporate uncertainty and risk: Hazelrigg [6] defines uncertainty as the absence of 
precise knowledge about the effects of decisions. Risk is insecurity about the outcome 
of the decision criteria resulting from uncertainty. Uncertainty and risk are crucial 
characteristics of decisions in engineering design that need to be acknowledged. 

• Be industrially applicable: The objective in conceiving a method for decision support in 
engineering design is to improve decisions in engineering design in industry. The 
method should be readily applicable and thus be easy to understand and realizable with 
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acceptable effort. Besides, software support should be provided that neither requires 
additional investments nor training. 

 
Background 
Four concepts currently used to support decisions in engineering design are described next. 
The advantages and disadvantages of these methods are shown up. It is described how these 
methods can be developed further in view of the requirements set out in the previous section. 
 
Decision Tables 
Decision tables are among the simplest concepts for decision analysis. In a decision table, the 
various alternatives of a decision are listed vertically and the decision criteria horizontally. 
Evaluations of how each individual alternative score on each of the criteria are placed into the 
resulting matrix. Owing to this simple matrix structure, a decision table can be easily 
augmented with additional alternatives or criteria. Note that the evaluation of the fundamental 
concepts in Figure 4 is actually an example of a decision table. 
A decision table allows for a quantitative assessment of alternatives (Figure 4). It does, 
however, not allow improving alternatives, as the influencing factors to the decision criteria 
are not shown. Since a single number is given to an alternative for each criterion, uncertainty 
and risk cannot be incorporated into decision tables. Finally, decision tables are industrially 
applicable as they can be easily implemented using simple spreadsheet tools. 
 
Decision Trees 
Unlike decision tables, decision trees not only allow for multiple alternatives, but also 
incorporate branches for different uncertain outcomes. As shown in Figure 2, Alternative 1 
has a 0.4 chance of leading to outcome 10 and a 0.6 chance of leading to 5. 
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Figure 2. Example of decision tree. 

 
Uncertainty can thus be accounted for in decision (Figure 4). Risk may also be considered by 
augmenting the tree with utility theory and the concept of the certain equivalent [7]. Decision 
trees are, however, targeted towards a single criterion and do not allow the assessment of 
alternatives based on multiple criteria. The most significant drawback of decision trees is 
industrial applicability. Although there are commercial software packages available for 
decision trees (e.g., TreeAge or PrecisionTree), decision trees grow exponentially and can 
only be used for decisions of modest scope.  
 
Influence Diagrams 
Influence diagrams, which are very similar to relevance diagrams, belief nets, and Bayesian 
networks, are singly connected, acyclic, directed graphs with decision, chance, and value 
nodes and conditioning and informational arrows between them [8]. In Figure 3, an example 
of an influence diagram with decision node D, chance node C, and value node V is shown. An 
informational arrow describing available information is between C and D. Conditioning 
arrows denoting probabilistic relevance are between D and C, C and V, as well as D and V. 
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Figure 3. Example of influence diagram. 

 
Influence diagrams primarily show the relationships that affect the decision criteria. They are 
therefore very helpful for improving alternatives, but less useful in assessing different 
alternatives based on multiple criteria (Figure 4). Influence diagrams allow the incorporation 
of uncertainty and risk. Commercial software support for influence diagrams is available (e.g., 
Analytica or DecisionPro). Besides, influence diagrams are very suitable for an industrial 
context, because they are graphic and simple to grasp. Conceptually, influence diagrams are 
quantitative, although in practice they are mostly qualitative. 
 
Simulation 
All previously discussed concepts are for analysis, i.e. the decision criteria are evaluated for a 
one-shot run of the decision. The fundamental difference in simulation is that you execute 
multiple runs to see how the system behaves in different situations. Consequently, simulation 
is closer to reality than the previously mentioned concepts [9]. 
Using simulation, different alternatives of a decision can be assessed for multiple criteria 
(Figure 4). These alternatives can then be improved, because the relationships influencing the 
decision criteria are laid down in the simulation model. Virtually all simulation models are 
quantitative. Uncertainty and risk can be incorporated into simulation by executing multiple 
runs. Unlike the previously discussed concepts, simulation does not imply a concrete method. 
Simulation needs to be particularized for the actual decision at hand. 
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Figure 4. Evaluation of concepts. 

 
Monte Carlo Simulation of Multi-Criteria Decision 
Each of the previously introduced concepts has its specific advantages. The method described 
in the following combines the advantages of influence diagrams and simulation. Influence 
diagrams are used to easily gather and process information on the decision system while 
simulation is used to quantitatively assess and improve alternatives as well as managing 
uncertainty and risk. The system architecture of the method and definitions of the terms used 
are given first. Then, the functioning of the method in simulating decisions is discussed. 
 
System Architecture 
The system architecture of the proposed method for Monte Carlo simulation of multi-criteria 
decisions is shown in Figure 5. As in Fernández et al. [10], it is distiguished between two 
primary types of decisions, i.e. selection and compromise. A selection consists of choosing 



 311

among a number of alternatives. A compromise consists of improving an alternative through 
its modification. Selection and compromise very often appear together. The term decision is 
therefore defined the following manner. 
• A decision is the selection among multiple alternatives and/or the improvement of 

alternatives through compromise according to one or several decision criteria. 
 

Compromise
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Influences Effects Decision criteria

 
Figure 5. System architecture of proposed method. 

 
The objective in taking decisions is to proceed towards defined objectives. Decision criteria 
are figures of merit of the extent to which the outcome of a decision fulfills these objectives. 
Two characteristics of the decision criteria are important. First, the decision maker wants to 
know the expected value of the decision criteria. Second, he/she wants to know the likelihood 
of negative deviations from the expected value. This is termed risk and is a result of the 
uncertainty inherent in the system. Decision criteria are defined as follows. 
• Decision criteria are figures of merit that indicate the extent to which the outcome of a 

decision fulfils the decision maker’s objectives. Decision criteria are characterized by 
their expected value and their risk. 

Effects carry the decision criteria. In other words, effects are events in the broadest sense that 
can be measured in terms of the decision criteria. A decision generally results in a multitude 
of effects. It is assumed in this context that the effects are independent of each other. The 
effects do not influence each other. We define effects in the following fashion. 
• Effects are events that are caused by the decision and that are measurable in terms of 

one or several of the decision criteria. 
In order to capture and quantify effects, we classify effects based on their probability of 
occurrence and the number of originating decisions. The resulting taxonomy of effects is 
shown in Figure 6. 
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Figure 6. Taxonomy of effects. 

 
Direct effects are the simplest type of effect. Their occurrence is certain. The occurrence of 
side effects on the other hand is uncertain and their probability of occurrence is therefore 
smaller than one. Multi-causal effects are the most complex as they cannot be traced back to a 
single decision. Multi-causal effects are very often neglected in decision analysis as they are 
only apparent if the interrelation of multiple decisions is considered. Multi-causal effects are, 
however, of increasing importance because they include the effects related to complexity 
management.  
The effects of a decision are not always the same. Their magnitude in terms of the decision 
criteria and their probability of occurrence depend on influences. As previously mentioned, 
influences include both control and disturbance variables. An influence may take multiple 
values depending on how the decision is made. This value may also be unknown to the 
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decision maker at the time of decision making. The decision for a particular alternative thus 
always implies the determination of the values of the influences. A decision is thus connected 
to the definition of influence/value sets, regardless of whether single influences are 
controllable or uncontrollable and known or unknown at the time of decision making. We 
define influences as follows. 
• Influences are factors that change the value of an effect in terms of the decision criteria 

and the probability of occurrence. An influence may take multiple values that may or 
may not be known at the time of decision. An influence may or may not be under the 
control of the decision maker. 

 
Functioning 
Functioning comprises the mechanisms that fill the system architecture described in the 
previous subsection. An overview of the method’s functioning is given in Figure 7. An 
alternative within a decision is described as sets of influences and respective values. The 
assignment of values to the influences is left to the human and his/her experience. The values 
may either be concrete values or unknown if the influence is unknown at the time of decision. 
Effects will look different depending on the values of the influences. That is why specific 
influence/value sets are mapped to specific occurrences of effects. 
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Figure 7. Functioning. 

 
As outlined in the previous subsection, an effect needs to be measured in terms of the decision 
criteria. In most instances, the exact value will be uncertain. That is why all effects require 
probability distributions for the decision criteria that they can be measured in. The probability 
distribution may be discrete or continuous and may be of different types, e.g. normal or 
triangular distribution. Side and multi-causal effects also require information on their 
respective probability of occurrence. Since multi-causal effects are the result of more than one 
decision, they require a conversion factor to distribute the effect among multiple decisions. 
In order to compare and improve several alternatives, the decision maker will want to 
summarize the different effects. There may for instance be five different direct effects 
characterized by capital expenditure for a particular alternative. Each of these effects has an 
associated probability distribution. The decision maker will want to calculate the overall 
probability distribution for capital expenditure. This can be done analytically by calculating 
the convolution integral among the different probability distributions. This approach is, 
however, very tedious to carry out. It gets even more cumbersome for side and multi-causal 
effects. That is why a numerical approach is used here. Unlike most other methods, Monte 
Carlo simulation does not obey the so-called “curse of dimensionality” [11]. The 
computational cost does not depend on the complexity of the system. That is why Monte 
Carlo simulation is applied to calculate the overall probability distribution of each decision 
criterion from the individual probability distributions, probabilities of occurrence, and 
conversion factors. This works in the following manner. 
A random number generator is used to generate outcomes in terms of the decision criteria for 
each effect. The numbers are generated according to the respective probability distribution, 
probability of occurrence, and conversion factor. The outcomes of all effects are then added 
up to obtain the value of the decision criterion for one single experiment. This experiment is 
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repeated many times. If the number of experiments is sufficiently large, the frequency 
distribution of outcomes approaches the actual convolution integral. 
The decision maker thus obtains a frequency distribution for each decision criterion as the 
result of Monte Carlo simulation. A frequency distribution is generally too rich in information 
to serve as decision basis. That is why in the last step, the probability distribution is 
aggregated into two key figures. 
• Expected value: The expected value E[D] is the average outcome for an alternative in 

terms of a decision criterion D (Figure 8). The expected value is what a risk-neutral 
decision maker would be interested in. 

• Conditional Value-at-Risk (CVaR): As shown in the introduction, risk is a property that 
results out of uncertainty. Most decision makers are risk averse. It is extremely 
important to have a figure to measure and manage risk. Authors from finance [12, 13] 
have proposed the Conditional Value-at-Risk (CVaR) as a good measure of risk. The 
CVaR is defined as the conditional expected value of the loss under the condition that it 
exceeds the quantile α. For a detailed definition, we point to the above-mentioned 
literature. In the method proposed here, α = 50% is used. In other words, CVaRα(D) is 
the expected value of all outcomes below the expected value E[D] (Figure 8). 
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Probability
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CVaRo (D)

 
Figure 8. Expected value and CVaR. 

 
The expected value and the CVaR are displayed graphically as shown in Figure 8. The dot is 
the expected value and the left end of the line is the CVaR. The length of the line thus 
provides a quick impression of the associated risk. 
Using the expected value and the CVaR, the decision maker can rank-order different 
alternatives in terms of the decision criteria and thus carry out selection. The decision maker 
can also improve alternatives by deliberately altering the influences that are under his/her 
control and observing the impact on decision criteria. 
 
Case Example 
In this section, it is described how the method was implemented at a manufacturer of 
semiconductor equipment to support decisions in modular product development. The 
company applies modular product families to minimize cost while maximizing variety for the 
customer. The company frequently faces the decision of introducing new modules into the 
family in order to face up to emerging customer demands or new technologies. In the past, 
this decision was taken in an ad hoc manner. This often resulted in iterations in the 
development process, expensive prototypes, and excessive purchase prices from suppliers. 
Product development was altogether too expensive and too lengthy.  
The Monte Carlo simulation method of multi-criteria decisions under uncertainty was 
therefore implemented. The steps that have been taken to implement and use the proposed 
method are shown in Figure 9 and described in the following. 
• Identify needs and departments: Two main processes are relevant in new product 

development [14], the product development process leading from the formulation of 
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goals and strategies to the complete product design and the realization process leading 
from production to the use of the product. In this context, problems arose primarily in 
the product development process, so we focused on this process. The departments that 
are involved in product development in this company are R&D, supply chain 
management, and process engineering. The need consisted of minimizing their effort in 
the development of modules. 

• Define decision criteria:  The decision criteria were clear from the needs. The workload 
and investments for these departments in module development should be minimized. 
Workload was measured in days and investments were measured in Swiss francs. 

• Identify and quantify effects: Workshops were executed with each of the three relevant 
departments. In these workshops, a flipchart was used to first list all direct, side, and 
multi-causal effects of the decision to develop a new module. Most of the effects were 
those steps that are commonly associated with product development and that can be 
found in any engineering design textbook [15]. Numerous effects were, however, not 
that obvious. The multi-causal effects for instance included the life cycle management 
of modules, the need for an expensive PLM system, or increased stock keeping. All 
these effects are the result of several decisions to develop a new module. The effects 
were then quantified using probability distributions of the two decision criteria 
(workload and investment) 

• Identify and quantify influences: Effects with a large scatter in terms of the probability 
distribution were addressed and influences to the probability of occurrence and the 
probability distribution of these effects were identified. Different values of each of the 
influences were identified. Probability distributions and probability of occurrence were 
then associated with each value. Examples of influences that were identified as being 
significant are the tolerances of sensors, the level of integration of mechanics, 
electronics, and software, or the functional range. 

• Implement simulation: The results from the workshops, i.e. flipcharts with influence 
diagrams, were entered into a simple VBA software tool, which was developed for that 
purpose. 

• Run Monte Carlo simulations and make decisions: The complete software tool with the 
simulation data was given to decision makers. In the application, the method turned out 
to support decision in the following manner. The quantitative assessment of alternatives 
in terms of expected value and the CVaR allows comparing alternatives while keeping 
in mind risk. Also, the method has turned out to help in improving alternatives, by 
taking measures to change the value of influences. Using the method, the marginal 
utility of these measures is immediately quantifiable in terms of the decision criteria. 
Once experience has been made with a larger number of decisions, it will also be 
possible to define standards in terms of the expected value and the CVaR that should 
always be satisfied. This has, however, not been done yet. 
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Figure 9. Method’s application in case example. 
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Conclusions 
A method to simulate decisions in terms of decision criteria has been proposed. Decision 
criteria are quantified in terms of their expected value and the Conditional Value-at-Risk 
(CVaR). The decision maker may use selection and compromise to alter the values of 
influences of a decision. The influences have an impact on the probabilities of occurrence and 
the probability distributions of a decision’s effects. The overall distributions for the decision 
criteria are calculated from the individual distributions using Monte Carlo simulation. These 
distributions are then condensed into the expected value and the CVaR. The application of the 
method to decisions in modular product development has been shown. 
In this last section, the proposed method is evaluated against the requirements set out in the 
background section. Avenues for future research are given. 
 
Evaluation 
A method suitable for decision support should fulfill the following two functions.  
• Allow the assessment of alternatives based on multiple decision criteria: In the proposed 

method, multiple decision criteria may be defined. Different alternatives can then be 
compared based on how they perform in terms of the expected value and the associated 
risk of these decision criteria. à Fulfilled 

• Help improve alternatives according to the decision criteria: Alternatives can be 
improved by deliberately taking actions to alter the influences. The impact of these 
actions on the decision criteria is directly measurable in terms of the expected value and 
the CVaR. The marginal utility can therefore be quantified and the decision maker can 
determine whether the marginal utility justifies the cost. à Fulfilled 

In addition to the above functions, we also set out that the method should have the following 
characteristics. 
• Be quantitative: The inputs to the method are the values of influences that are mapped to 

effects. Effects are characterized by probabilities of occurrence, probability 
distributions, and conversion factors. The overall probability distributions for the 
decision criteria are calculated using Monte Carlo simulation. The method is therefore 
highly quantitative. à Fulfilled 

• Incorporate uncertainty and risk: Uncertainty is captured in the method by modeling the 
decision system using probability distributions. The risk in the decision criteria is 
quantified using the CVaR. à Fulfilled  

• Be industrially applicable: The method was applied in one company using a series of 
workshops. No major obstacles occurred in the implementation. The method produced 
the desired outcome. The method has, however, only applied to one type of decision 
(modular product development), one company, and over a limited amount of time. In 
order to claim general industrial applicability, one would have to apply the method to 
different types of decisions, in different companies, and over an extended period of 
time. à Partially fulfilled 

 
Avenues for Future Research 
The following topics for future work could be identified in the scope of this research. 
• Identify standards for the CVaR: As outlined before, the CVaR represents a suitable 

measure for the risk of a decision criterion. A key question that needs to be posed is the 
degree of risk that is acceptable in decisions. Obviously, this question cannot be 
answered in general. Still, it is possible to apply the proposed method to a specific type 
of decision in a company over a longer period of time. The CVaR and the actual 
outcomes of the decision should be continuously monitored. As a result, one should be 
able to define standards for the CVaR in specific types of decisions. These standards 
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represent an acceptable amount of risk in an alternative and can be used to carry out risk 
management more effectively and efficiently. 

• Templates for influence diagrams: Due to their ease of application, influence diagrams 
are used in the workshops to capture information on influences and effects. In the 
implementation we observed that it is highly useful to have a template for the type of 
decision at hand which only needs to be adapted to the particular company. This 
increases the likelihood of including all important effects and speeds up the workshops. 
We are currently in the process of defining templates for decisions in modular product 
development based on observed effects from implementation and findings from the 
literature. 
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