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1 Introduction 

This paper presents the development of a set of theoretical principles for Computer Aided 
Conceptual Design (CACD), and their implementation into a CACD tool for the design of 
electromechanical systems. The current global economy influences every aspect of the product 
life cycle; it dictates the types of products needed (e.g. more functional products), their design 
(e.g. non-collocated collaborative groups), and manufacture (e.g. assembled in Asia with parts 
from Europe). In order for companies to remain competitive, products must offer more 
functions at a lower price. This is particularly true with traditional mechanical products that 
now have an increasing number of electric and electronic elements to improve their 
functionality. Advances in manufacturing and materials are helping in lowering costs and 
improving functionality, but it is during design that a greater impact can be made in the final 
product, further, it is during conceptual design that 100% of the functionality of a product is 
established and approximately 70% of its cost is defined [39].  

2 Conceptual Design of CEMS 

It is surprising after knowing these facts that CACD research and tools available are in their 
early phases. In the last decade there has been an emergence in Conceptual Design research 
following the premise that computer aided tools should support design information of which 
geometry is only one aspect. Geometrical design information support has achieved a relative 
level of maturity (e.g. geometric engines, reasoning, and CAD tools) but other aspects of 
design information such as requirements, functions, and behavior haven’t been clearly 
formalized. Conceptual Designers usually rely on experience and labor intensive approaches 
to create concepts due to the lack of sufficient CACD tools. 

The development of a complex system makes necessary a methodical and rational approach; 
for this reason, prescriptive models of design such as Pahl and Beitz [39] and Hubka and 
Edder [23] are appropriate because of their emphasis on logical selection, full understanding 
of events, and rational choice. Although there is no universally accepted design process model 
for systems design, most prescriptive models divide the design process into three main stages: 
Conceptual, Embodiment and Detail. The information about the design moves through this 
pipeline of tasks by successive transformations; every task transforms the information from an 
input to an output state [50] as it evolves into a complete design. 
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During Conceptual Design information is transformed from the abstract to the concrete; it 
begins by abstracting the requirements list to create a design specification, and finishes with a 
concept. There is no clear definition of what a concept is, but it is widely accepted as the 
definition of crucial physical principles, geometry, and materials in an integrated structure of 
working principles. At each stage (Conceptual, Embodiment, and Detail) of the design 
process, the following cycle is iterated: Analysis, Design, Synthesis, and Evaluation. Analysis 
studies the elements of a system and its interrelationships. During Analysis, the system is 
decomposed in manageable (i.e. a solution can be easily found) parts; for example, during 
functional decomposition the overall function is decomposed into a functional structure [39]. 
Once the system is decomposed, each element needs to be designed (i.e. solved); during 
functional decomposition, each element is functionally defined by its inputs (e.g. energy, 
material, signal) and outputs. The systems engineer (who must be knowledgeable in all 
involved domains) assigns the elements to the design teams and oversees the overall system 
design. Depending on its complexity, an element could be treated as a subsystem and be 
further decomposed. The design of an element can be of different types. Shah and Wilson [50] 
identified four classes: Novel (i.e. from first principles), Evolutionary (i.e. modifying an 
existing design), Parametric (i.e. following an already characterized design procedure), and 
Selection (i.e. searching standard components from catalogs). During Synthesis, each 
individually designed element is put together to form the solution system. The effects are 
understood by studying its physical behavior (e.g. CAD layout, CAE simulation, vibration, 
assembly, etc.). The resulting synthesized design is then evaluated against one or more criteria 
defined by the designer, for example, cost, manufacturability, reliability, etc. Most of the 
times, two or more criteria are at conflict (e.g. quantity and quality vs. cost reduction), and 
optimization is needed to find a solution. 

Complex Electromechanical Systems (CEMS) are technical systems that transform energy, 
material, and signal to perform a technical task [39], and are common in everyday life, from 
airplanes to cell-phones. These systems combine multiple disciplines that interact in a 
complex structure (due to intricate functions and number of elements). During their design, 
CEMS can be abstracted to reduce their complexity by filtering non-essential characteristics 
according to a point of view, for example, abstraction by domain (e.g. focusing on all 
mechanical systems of a submarine), by function (e.g. propulsion system of an airplane), by 
the flow (e.g. power train in a car), or by a combination of abstractions. 

3 State of the Art   

Conceptual design of electromechanical domain systems has been traditionally done using a 
combination of “back of the envelope” techniques (i.e. paper and pencil, drawing tools, and 
text processors) and various computer-aided tools for functional decomposition, component 
behavior, and component selection. Recent research developments in this field have produced 
Computer Aided Conceptual Design (CACD) systems with mixed results. In one extreme 
some systems are too abstract (the designer uses various tools for different design tasks, but 
still has to manually keep track of the feasibility of the overall design) in the other extreme, 
some systems are too specific (working only for one type of product or engineering domain). 
A look at the state of the art in Computer Aided Conceptual Design (CACD) of complex 
electromechanical systems (CEMS) reveals fragmented efforts to support function-to-form 
design. The main issues are related to the definition of catalogs of elements and the creation 
process of structures representing the design. Various (element catalog) taxonomies exist for 
functions, behavior and components; most systems use taxonomies valid only inside their 
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system making data exchange difficult. When creating structures, creation rules are either too 
lax (similar to a diagram-sketching tool with no rule checking – “back of the envelope”) or too 
strict (limiting the designer unnecessarily). Another issue is that information is seldom reused, 
for example, deriving a behavior model from a functional structure is either done manually or 
with strict ad hoc relation cases. These and other issues motivated the development of 2nd-
CAD. Specific areas of interest in CACD research are discussed in the following subsections. 

3.1 Ontologies 

An ontology is a formalization of knowledge representation that includes a vocabulary and 
syntax. Ontologies for requirements, functions, behaviors, and form have been proposed. 
Szykman [57] identifies two main types of representations: Grammatical and Mathematical. 
Grammatical representations define functions using verbs and adjectives, the natural language 
resembles the designer’s language, but it is difficult to implement on a computer 
[28,32,54,11]. Mathematical representations define functions in terms of input and output 
variables and their transformations; computational implementation is easier, but it requires 
translation to the designer’s natural language [39,55,23,57]. Pahl & Beitz model functions as 
actions on energy, material, and signal [39]. Brady and Juster [5] proposed a Conceptual 
Design Tool for assemblies that use a functional structure as an input and describes partial 
(abstract) geometry. Horvath et al. [22] provide a formal methodology for the development of 
ontologies for modeling design concepts. 

3.2 Function Converters 

The objective is to convert the functional model into a component (i.e. device, artifact, part, 
form or geometry) and/or behavior [61,38,23,62,48,51,54,31]. Functional analysis adds a 
reasoning scheme to knowledge representation [29]. Chakrabarti and Bligh [9], initially find a 
candidate component, then iteratively compare functional requirements against attributes to 
remove unsatisfactory parts and iteratively refine the design. Kurfman proposed function 
chains and catalogs to map them against known devices for the working principles [31]. 
Domain specific methods have also been proposed for functional decomposition 
[11,24,30,54]. Chakrabarti and Tang [10] present a tool that uses a database of functional 
elements to provide an exhaustive set of solution concepts to synthesize the functional 
requirements. Zhang et al. [70] show physical behavior can be derived from a desired function 
and a causal relation established. 

3.3 Bond Graphs  

Bond Graphs model the energy and signal flows among components in a complex electro-
mechanical system using a small set of ideal elements [27,58,40,4]. When modeling with bond 
graphs each element has two associated variables: an effort and a flow; this allows directed 
analysis through the concepts of causality and power direction. Effort and flow variables in 
electrical networks are V and I, in mechanical linkages are F and V, in hydraulic and 
pneumatic systems are p and dQ/dt. Figure 2 shows an example. Bond Graphs have been 
viewed as front ends to numerical simulations [60] by providing an intermediate level of 
abstraction to analyze physical causality independently from the underlying math models. 
Bond Graphs can be used in conceptual design but a limitation is that they can only represent 
information that can be adapted to the Power=effort*flow model leaving out other important 
information, particularly geometry. Finger & Rinderle [16] defined a Bond Graph grammar 
with the objective of mapping (dynamic) behavior into form. The form characteristics were 
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represented using an augmented topology and geometry graph that could be linked 
parametrically to the behavior graph [45] once both levels are complete. One can identify 
graph segments that can be replaced with simpler subgraphs through isomorphism with known 
component base and equivalent substitution graphs. Goodman et al. [21] proposed automated 
synthesis of mechatronic systems using Bond Graphs and Genetic Programming. Commercial 
systems that support Bond Graphs include: Symbols 2000 [56], 20-Sim [1], and Dymola [14]. 

3.4 Graph Grammars 

A graph grammar is a mathematical method for manipulating graphs consisting of domain 
specific entities and connectors such as mechanical elements or functions. An input graph is 
modified into an output graph through grammar rules [46,47,49]. Shapes can be represented as 
graphs and rules used to manipulate them (Shape grammars). Shape grammars have proved 
useful in 2D architectural layouts [18,19]. Shape grammars have been used as methods for 
maintaining geometric and topologic validity in geometric models [35,17]. A further example 
of grammars in engineering design application is in mechanism design [48,3]. GGREADA 
[46] is an application that uses a graph grammar representation of the rules, entities, and 
constraints necessary to design an assembly of simple mechanisms to satisfy specified design 
requirements.  

3.5 Mechanism Synthesis 

Traditionally, mechanism synthesis is done on specialized mathematical methods from 
kinematics [15,65]. In recent years, some symbolic methods have been proposed [36,52]. 
Campbell and Limaye [7] proposed function grammars for design configuration search. Li et 
al [33] reported a method of computational synthesis through heuristic searches in a library of 
mechanical devices to generate design alternatives based on a specification. Chakrabarti and 
Tang [10] developed a software that can synthesize an exhaustive set of solution concepts to 
satisfy functional requirements of a design problem in terms of vectors for rotation, force, etc. 
The synthesis process is done through exhaustive searches of topological networks causally 
connected to functional elements. Ilies and Shapiro [26] used definitions of partial geometry 
to define (kinematic) functionality to avoid unnecessary constraints.  

3.6 Parametric Design Systems 

There are various academic and commercial systems that perform parametric design. Some 
early systems were, DOMINIC [37,13] and DPMED [53,41,42]. DOMINIC used a heuristic 
hill climbing approach; only one variable could be changed at a time with no guarantee of 
convergence or improvement. Equations were solved sequentially. Design Sheet™ [6,43,44] 
and other similar software [12,69] deal primarily with simultaneous solving of design 
equations. They typically use a bipartite graph to represent relations between equations and 
parameters. Strongly connected components in the graph form loops indicating a system of 
equations that need to be solved simultaneously. For non-linear equations, numerical methods 
are used to break out of such loops. iSIGHT7 [59] is a commercial shell that performs design 
automation by using appropriate combinations of optimization, DOE, and Statistics modules 
for each problem. Other commercial systems include ICAD [25], which combines geometric 
CAD with equation solvers, and ACSYNT from Phoenix Integration [2]. Our own ASU 
Design Shell [63,64] represents designs parametrically and solves the equations with external 
solvers (DesignSheet and Maple). 
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4 Fundamental Challenges 

The main issue in defining a set of fundamental principles for Conceptual Design was found 
to be Knowledge Representation (KR) of information, and the support of analysis and 
synthesis tasks during Conceptual Design. Design information evolves from the abstract (e.g. 
function) to the concrete (e.g. form) mostly relying on the active tracking, observation, and 
reinterpretation made by experienced designers. Various researchers have worked on making 
Conceptual Design easier through CACD tools, but this task has proven difficult due in great 
part to the creative nature of the tasks to support. Research has been done on various aspects 
of Conceptual Design, for example Knowledge Representation (Ontologies, structures, 
catalogs, etc.), Analysis (functional decomposition, behavior simulation, and form definition), 
and Synthesis (function to behavior to form), still, these efforts are mostly isolated [34,26,8]. 
The continuity of information was key in developing a comprehensive and efficient KR 
schema as part of the principles for CACD. For example, information variables change names 
(and sometimes their intent) when going from Requirement to Form (i.e. across the Abstract-
Concrete axis), or from feature to part to component to assembly to system (i.e. across the 
parent-child axis), or from one element to another (i.e. across the flow-Connection axis). If a 
requirement defines “pressure A”, this same information intent must be maintained at the 
function, behavior and form levels, also it must be identifiable across the system and down to 
the particular component regardless of the level of abstraction, and finally, if it passes to 
another element through a pressure connection, the identity and intent of the variable should 
persist. The definition of a common ontology doesn’t necessarily compete against current 
widely accepted ontologies; on the contrary, it is an evolutionary step combining the best 
characteristics of each one. The structures created with these ontologies of elements 
(requirements, functions, behaviors, and forms) and relationships (ports, connectors, links, 
etc.) follow connectivity rules in order to have valid designs. The information attributes 
content and structure relationships were clearly defined in order to facilitate the abstraction of 
necessary information for graph grammars, parametric equations, transformation block 
diagrams, catalogs, libraries, repositories, graphical structures (Petri-nets, neural networks, 
etc.), web searches, reasoning (mathematical, graphical, case based, knowledge based), among 
others. Characteristics of a CACD Tool  

5 Characteristics of a CACD Tool  

5.1 Design Intent Capture 

The Functional Structure, when properly designed, represents the intent of the system (what 
originally is supposed to do). Because of the interconnected multilayered structures, changes 
in the component or behavior levels can be traced back and validated for their functional 
effect. 

5.2 Change Propagation 

An advantage of having an interconnected multilayered structure is that changes can be 
propagated relatively easy. What if scenarios can be analyzed for their functional intent, 
behavior response, and component selection. 



6 

5.3 Information Reuse 

Designers can create user-defined elements and store them in catalogs. Parts of structures can 
also be stored for later use and even complete concept designs (i.e. structures) can be used as a 
redesign starting point. 

5.4 Data Exchange 

A CACD tool primary objective is to aid the designer in the creation of a system concept 
(represented by a multilayered interconnected structure). Interaction with other CAD/CAE 
tools is encouraged and intended. The catalogs’ taxonomies were developed with this in mind 
and can be traced to various commonly accepted taxonomies making it easier to import/export 
data. 

5.5 Technical Feasibility 

The logical data/transaction model behind a CACD tool allows the creation of only 
Technically Feasible (possible but not optimum) elements and structures. This will ensure the 
connectivity, decomposition and mapping of elements in the structure. 

5.6 Interactive Advise 

A CACD tool provides interactive contextual help throughout the design process. The system 
not only enforces a set of logical rules, but also advises the designer on what to do. For 
example, two elements can only be connected if the inputs and outputs match; in case of 
mismatch, the system will search and suggest matching interface element(s) or a temporary 
black-box element. 

5.7 Design History 

Design History can be documented with the versioning of the CACD tool structure. A 
structure can contain information about the functional intent, behavior model, and components 
selected at that time.  

5.8 Design Flexibility 

The CACD tool provides a set of catalogs of ready-to-use basic elements; a designer can use 
these to create user-defined elements. There is no limitation on the type of systems to create, 
as long as the structure follows the CACD tool logical model. 

5.9 Intuitive Interface 

The CACD tool Catalog and Structure are the two basic modules for the management of 
elements and structures respectively. Designers, in general, are used to catalogs of elements 
and create structures to represent systems; hence, the CACD tool provides a familiar 
environment to the designer. The CACD tool should be simple to use and understand; its 
underlying strength is in the catalog schema and content, and the structure’s logical model. 
Because of this, the designer can right away start creating elements and structures freeing 
his/her mind from the structure maintenance (technical feasibility) and focusing into more 
creative tasks. 
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6 2nd-CAD 

2nd-CAD was envisioned as a CACD tool that supports designers in creating system 
structures using catalogs of basic elements as building blocks; it follows a scheme developed 
to overcome typical shortcomings of other CACD systems. The overall output of 2nd-CAD is 
an interconnected multilayered structure of elements representing the electromechanical 
system concept. The input is the designer’s selection of elements and creation of structures. It 
functions as a conceptual “backbone” maintaining a structure while interacting with other 
CAD/CAE tools. 

The implemented CACD tool, SECOND-CAD (Systems Engineering CONceptual Design - 
CAD), or 2nd-CAD [66,67,68] supports functional design, behavior modeling, and component 
selection from standard industrial supply catalogs for mechanical, fluid, and electric 
engineering domains. Three entity catalogs are available for the 2nd-CAD user to create three 
interconnected structures for function, behavior, and component. By basing the 
implementation on the CACD principles, a robust tool was created that allows the user to 
define entities based on popular taxonomies; this eases data exchange with other tools. When 
constructing structures, only technically feasible relationships are permitted and if an element 
in a structure is modified, the change is propagated throughout the structure. It reuses the 
entities’ information content to create new structures and since the three structures are 
interconnected, changes can be traced for design validation. 

2nd-CAD includes ready to use Catalogs of basic elements (functions, components and 
behaviors). 2nd-CAD also provides the means to create function, behavior, and component 
Structures by selecting and interconnecting elements from the catalogs. 

The overall objective of 2nd-CAD is to provide the designer with catalogs of elements to 
create structures of functions, behaviors, and components. The following requirements were 
taken into consideration: Capture Design Intent, Ease Change Propagation, Promote 
Information Reuse, Allow Data Exchange, Provide Interactive Advise, Preserve Design 
History, Maintain Technical Feasibility, Permit Design Flexibility, Present an Intuitive 
Interface. 2nd-CAD is central, but not exclusive, in the design of CEMS.  The structure 
maintains the essence (intent) of the CEMS design, and acts as the pivotal backbone while 
using other CAD/CAE tools. 

The development of 2nd-CAD is divided into two modules: Catalogs and Structures. 

6.1 Catalogs 

Because of the way the catalog was created, the elements’ taxonomies (i.e. category types) are 
compatible to most of the taxonomies currently available for functions, behaviors, and 
components; this helps when exchanging data with other CAD/CAE tools. Each element 
transforms a flow (of energy, material or signal) from input to output; hence, all elements are 
defined by its inputs, outputs, and internal attributes. The designer can create user-defined 
elements for future use. The Catalog can be edited, queried, and viewed by the designer in 
various ways. 

A set of three catalogs, one each for functions, behaviors, and components, was planned. Each 
catalog is compatible with other equivalent taxonomies, further, the three catalogs follow 
similar models in order to map among different element types (function to behavior to 
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component). Various taxonomies were analyzed in order to distill 2nd-CAD’s own 
taxonomies for function, behavior and artifact (see Fig. 1). Basic sets of elements were 
defined; each element can be traced to most common taxonomies. The data required to 
represent the catalog elements was analyzed and a data model (entity-relationship-attribute) 
was created. The data model consists of input, output, and transformation information. A 
hierarchy was found when comparing data models; a component contains a behavior, and a 
behavior contains a function. Hence, a function can be traced to one or more behaviors, and a 
behavior to one or more components. This concentric ring-like model would allow the reuse 
of information when generating structures. Basic elements could be combined to create user-
defined elements. Defining a standardized, integrated, and compatible catalog was a 
challenging task. 

 TYPICAL 
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FN 

BH 

CP 

CONCEPTCAD 
TAXONOMIES

STANDARDIZATION 

COMPATIBLE 

DATA 
HIERARCHY 

INTEGRATION 

CONCEPTCAD 
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FUNCTION 

BEHAVIOR 

COMPONENT 

ELEMENTS 

 

Figure 1. 2nd-CAD Catalog Creation 

6.2 Structures 

It was found that in a structure (functional, behavior, or component) there are 2 types of 
relations (see Fig. 2). Flow connections relate the output (of energy, material or signal) of an 
element to the input of another (e.g. function A to function B). Decomposition connections 
relate parent-son elements that define a subsystem hierarchy (e.g. supercomponent to 
component to subcomponent). A third type of relation, Mapping, connects elements from 
different structures (e.g. function to behavior). Each type of relation must abide to a set of 
rules that identify if two elements can be connected. For example, two elements can be flow 
connected if the input-output flows match, the matching depends on the type of element: 
Function (flow type match), Behavior (Flow type and size), and Component (Flow type, size, 
and physical dimension). Decomposition rules are mostly concerned with avoiding paradoxes 
(an element is its own parent or son) and maintaining the overall input and output flows (e.g. a 
function containing two subfunctions must have the same overall i/o flows). Mapping rules 
ensure the reuse of information when creating a new structure (e.g. function A can be mapped 
to behavior 1, 2, or 3). Defining these constraints into a structure data model was a 
challenging task. 
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Figure 2. 2nd-CAD Structure model 

The designer can create functional, behavior, and component structures independently. 2nd-
CAD allows only technically feasible (possible, but not optimum) structures. For example, 
two elements can be connected if the flows match. System structures can be grouped into 
subsystems following a hierarchical decomposition of parent-child elements. A 2nd-CAD 
structure can be imported/exported to/from other CAD/CAE tools (e.g. Behavior analysis, 
Component Selection, Functional Analysis, Layout Design, etc.); this is possible since each of 
the 3 catalogs is compatible with other typical taxonomies. In 2nd-CAD one structure (e.g. 
functional) can be reused to interactively generate another structure (e.g. behavior); this is 
possible since the 3 catalogs of basic elements share the same underlying data model. 
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Figure 3. 2nd-CAD Implementation 
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Figure 3 shows the simplified system architecture for 2nd-CAD. Once 2nd-CAD provides 
basic support for the documentation of conceptual design, one can explore other areas of 
opportunity, for example: Extend functionality, Genetic Programming, Case Base, Knowledge 
Base reasoning, Data Exchange, Design Automation. 

7 Conclusion 

Based on the research presented in this paper, various principles are needed in order to have a 
successful CACD tool. An important principle is mobility: the ability to work across levels of 
abstraction during conceptual design, for example, moving from function to behavior and back 
by reusing design information; to achieve this it is necessary a robust data structure capable of 
supporting the required knowledge representation. Another principle is an appropriate 
ontology of elements (i.e. functions, behavior and components); having an ontology that is 
compatible with similar existing ontologies (e.g. among available function ontologies) for 
standardization, and structured in a way that allows the integration among dissimilar 
ontologies (e.g. information reuse from function to behavior). In order to have such ontology, 
it should be based on a universally accepted theory; one approach is to base this ontology on 
physical principles since these do not change.  

The authors would like to acknowledge the support received through NSF Grant DMI-
0115447. 
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