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Abstract 
 

A highly dynamic industry needs to use synergetic effects to reduce production cost and the 

time to market. A common production scheme in e.g. the automotive industry is the support 

of the main manufacturer by several part suppliers. Usually those part suppliers have their 

own product model which represents their intellectual property. Some of them provide fixed 

standard components; others provide configurable designs and hand out abstract black box 

configuration systems for the main manufacturer. As development progresses, the product 

models are changed and subject to an evolving process. An integrated model of all parts and 

their inner details would make the intellectual property of a part supplier available to the main 

manufacturer and the part supplier would be obsolete as knowledge provider. In this paper we 

propose an integrated product model through well defined reasoning interfaces. Those 

interfaces are announced on a blackboard and can be adjusted to only release information 

which is green-lighted by the original part manufacturer. 
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1. Introduction 
 

The global market demand for shorter product cycles requires a fundamental change in the 

involved manufacturing and planning processes. In recent years it was attempted to make the 

product development more efficient by viewing it as an integrated effort. The organisation of 

the information flow of a company is researched and optimized within the CIM (Computer 

Integrated Manufacturing). In CIM the focus lies in the interactions between CAD/CAM and 

the processes involved in Production Planning and Control [1]. The knowledge which is 

shared in a CIM environment has direct effect on the design process and all involved work 

units of the production process. The focus of this paper is the exchange of product model 

information between companies and ensuring that vital company knowledge is kept secret 

while preserving the ability to reason over the product model. For a successful integration of a 

component in a greater design project, it is necessary to have access to the relevant 

information without getting access to restricted knowledge.  

A variety of methods have been researched on how to express and automate certain aspects of 

the design process [2]. First generation systems used fixed geometric primitives to build 

models. The evolution to parametric models introduced the constraints and form features and 

enabled the efficient generation of product variants. Often the main focus for a designer is not 

the creation of new products from scratch but the adaptation of an existing product in order to 

evolve it to the next product generation. Classic methods to describe parametric object 

dependencies include constraints and form features. First the constraints were introduced to 
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express ground, dimensional, geometric and algebraic relations. The concept of form features 

was later added to provide a kind of template to predefine certain aspects of a functional 

module [2]. The form features allow for a greater expression of valid objects. However the 

relationships between disjoint objects and models can be difficult, if they don’t use the same 

structural expression. Typical problems which are considered in this paper are the interaction 

between isolated components distributed over several companies and the integration into a 

global product model. It should be possible to validate the model, regardless of prohibited 

access to knowledge which should stay in the company that is supplying the component. 

As an example scenario where rich product knowledge is captured within a product model is 

the “mass customization” of products, which can be done efficiently by using a product 

configurator. The objective of product configurators is to provide a CAD system for time 

efficient variant generation and validation [3]. This is achieved by integrating enough design 

knowledge into the system in order to have the system propose obvious and intended design 

steps or even execute them automatically, thus generating valid product variants. 

Unfortunately, most product configurators are standalone applications which will not allow 

the import and export of product data from other configurators, as this would mean giving out 

all the companies’ vital product knowledge. Product configurators use a set of rules to 

predetermine the possible characteristics of a product. By solving the rules on a given input, 

the machine can decide if it is possible to build a product or not and also reach a specified 

product quality. Learning heuristics can help to solve the configuration problem [4].  

 

 

Figure 1. Example Scenario of parametric or variational product design 
 

As example consider the situation shown in figure 1, where a redesign of a product is needed 

at a company “C” to create an advanced product. A product design can be captured through 

parametric modelling, if the product stays overall the same, with only minor adjustments, that 

can be derived from the original product design and be expressed in parametric or variational 

concepts, such as constraints. A redesign could involve the replacement of components of 

supplier “X” by components of another supplier “Y” because supplier “Y” provides a 

component of higher quality. For the redesign there is a need to access the product data of 

supplier “Y” to introduce and test the new component. Of high importance to supplier “Y” is 

the distinction between public and private knowledge, since supplier “Y” has an interest in 

keeping his intellectual property secret.  

One solution which is widely adapted by the suppliers is to hand out unsharp information, 

through a model catalogue or more sharply through selected specifications. This means that 

the needed values have to be transferred by hand into the used product model at company 

“C”. Another approach which abstracts over the details of the product model is to specify a 

component through a standalone configuration application which can be used if the interfaces 
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are known. Normally a high amount of useful information is hidden from the integrator. There 

are several approaches to support the design task by knowledge based systems [5]. For those 

systems it only the homogenous situation within one company is considered. 

 
2. Related Work 
 

Constraint programming and reasoning has a long history. The use of constraints is not fixed 

to the domain of CAD but stretches over a wide range of application fields where the solution 

of combinatorial problems, decision problems or reasoning on unsharp information is needed. 

Current research, after the seminal works of Yokoo, Ishida and Kuwabara [6] focuses strongly 

on the application of distributed constraints using agent networks. 

 

Recently developed constraint languages include: 
 

• The Object Constraint Language (OCL) [7] which is a part of UML 

• Mozart [8], a development platform for intelligent, distributed applications based on 

the programming language Oz. It has an emphasis on distributed constraint solving. 

• The ECLIPSE Constraint Logic Programming System [9], which contains several 

constraint solver libraries, a high-level modelling and control language, interfaces to 

third-party solvers, an integrated development environment and interfaces for 

embedding into host environments. 

 
3. Constraint Model and Distributed Constraint Satisfaction (DCSP) 
 

In this paragraph we will further discuss the example scenario and show why it can not be 

solved using regular constraint programming. Constraints are a classic method to describe 

component structures in CAD. We give a short introduction in constraint logic programming 

to show the applied methods and motivate our approach in comparison. For further reference 

consult [10]. 
 

Constraints in the domain of CAD can be divided into three groups: 
 

• Absolute Constraints 

• Geometric Constraints 

• Algebraic or Dimensional Constraints 

 

Absolute Constraints represent fixed values in a design system, such as coordinates or fixed 

expressions (constants). Geometric constraints express relations between geometric objects, 

such as “is parallel to” or “is perpendicular to”. Algebraic constraints describe functional 

dependencies between parameters of objects. The task of finding a valid geometric 

expression, while fulfilling all active constraints, is described through the constraint 

satisfaction problem (CSP). If the problem is distributed across several domains, we speak of 

a distributed CSP (DCSP). 

For a constraint system to be solved by a computer, it is formalized to be used with a calculus. 

A calculus is a set of transformation rules. It uses a step called resolution to derive the next 

step by applying a transformation rule. Such a calculus can also be viewed as a state-transition 

system. The transition system is defined as a Triple (Z, T,a ), where S is a set of states, T ⊆  

Z is the set of terminal states and a  ∈  Z×Z is the transition relation, for which holds the 

following: 

S a  S´ for all terminal states S ∈  T and all S´∈  Z. 
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We will now use a small transition system and a calculus to build a DCSP for the scenario. 

Each state in the transition system is equal to an assignment of values to the constraint system 

or a transformation of its rules. A transition from one state to another is reached by applying a 

resolution step (see section 3.1). Under the precondition that the conditions (or constraints) 

are fulfilled, a transition can be made to another state, starting from the one on which it was 

defined. 

 

This can be written as:                        
SS

Condition

Condition

n

′a

...

1

 

 

It is possible to capture several aspects of the situation of the scenario described in section 1, 

through the use of the distributed constraint satisfaction problem (DCSP). The DCSP is a CSP 

with the following enhancements: 

 

• Each location of the DCSP forms a local reasoning domain 

• The reasoning domains are interconnected through interfaces 

• All reasoning domains together form the DCSP 
 

 

Depending on the distributed nature of a DCSP setup, there are several possibilities in the 

information flow to resolve constraint satisfaction. Several distributed algorithms exist to 

solve the DCSP [6]; the main difference between the solutions is, if the processing is 

sequential or if it has to be in parallel. Distributed constraint setups are shown in figure 2.  

Both communication models in figure 2 are designed to have an information flow towards a 

“master product”. The master product functions as described in the example scenario and 

represents a product in which to integrate other products from part delivering companies.  

 
 

 

Figure 2. Information flow with inter-subpart constraints 
 

On the left side in figure 2, the participating suppliers have equal communication rights. This 

setup however requires the involved parties’ models to communicate directly. This can lead to 

problems when IP protection is needed. In order to communicate between models, the part 
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suppliers have to open the models for a competitor. This unwanted situation can be resolved 

partly, if the setup on the right side of figure 2 is used. Here the part suppliers only 

communicate through the master. The master synchronises communication, therefore the 

suppliers have to open the model only to the master company. There can be situations where 

this is also unwanted. The master also gets deep knowledge of the product, when constraints 

have to be established towards inner values of a subpart and when the information for the 

constraint resolution runs through the master. This leads to a need for methods of information 

hiding. 

A constraint model serves to define possible relations between different values of geometric 

objects. The goal is to solve the constraint satisfaction problem, which is defined as one or all 

sets of variable values to a given constraint model.  

The CSP consists of a finite set of variables X and domains D to which each variable is 

associated and a set of constraints C. 

 

},...,{},,...,{ 11 nn CCCXXX ==                                            (1) 

 

A constraint Ci consists of two parts, the subset Si of variables on which it is defined and the 

associated relation reli: 

},...,{
)(1 ijiii XXS =                                                       (2) 

 

)(1
:

ijiiii DDrelS ××⊆ L                                                  (3) 

 

As example, a simple constraint system for Boolean algebra can be set up as follows: 

 

C ::= true | false | X B= Y | -X B= Y | X B∧ Y B=  Z | X B∨  Y B=  Z |  X B⊕  Y B=  Z | C ∧  C 

 

3.1 CLP-calculus for constraint solving 
 

We will describe shortly a calculus for the processing and solving of a CSP, based on 

constraint handling rules (CHR) [11]. The advantage of CHR is to be able to cover new 

domains by providing user-defined constraints. The rules of similar systems are mostly fixed. 

The solver of the CHR is able to transform a constraint system by using the following rules: 

 

• Simplification 

• Normalization 

• Propagation 

• Entailment 

• Solving 

• Optimization 

• Consistency check 

 

A user defined constraint [11] for less-than-or-equal (=<) can be defined using syntactical 

equality (=) in three relations: 
 

• Reflexivity: A=<B ↔  X=Y | true 

• Antisymmetry: A=<B ∧  B=<A ↔  A=B 

• Transitivity: A=<B ∧  B=C →  A=<C 
 

The operational semantics of CHR use is given by a transition system with initial and final 

states. The sequence of the solution steps is normally not deterministic and often relies on 
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search for value sets if there resolution steps can’t be applied. Failed states have to be detected 

to determine the unsolvability or to start some sort of backtracking to come to a final state. 

 

A CHR-calculus works on states ν〉〈 DEF ,, , where F are the constraints remaining to be 

solved, and E and D are constraints that have been accumulated and solved so far. The initial 

state has the form ν〉〈 truetrueF ,, , the failed state ν〉〈 falseEF ,,  and the final state  

ν〉〈 DEtrue ,, . The following rules are applied to process a constraint system [11]: 

 

Solve:             
DDCCTandinbuiltisCif

DEFDEFC

′↔∧=−

〉′〈〉∧〈

)(|

,,,, aν
                                  (4) 

 

Introduce:                                 
.

,,,,

constrCHRaisHif

DEHFDEFH νν 〉∧〈〉∧〈 a
                                         (5) 

 

Simplify:                     
)(|)|(

,,,,

GHHxDCTandPinBGHif

DHHEFBDEHF

∧′=∃→=↔

〉∧′=∧〈〉∧′〈 νν a
                        (6) 

 

Propagate:                   
)(|)|(

,,,,

GHHxDCTandPinBGHif

DHHEHFBDEHF

∧′=∃→=→

〉∧′=∧′∧〈〉∧′〈 νν a
                        (7) 

 

The discussed constraint model of a CSP however is sufficient to fully describe the scenario 

of section 1, if all parties agree upon full information sharing. We will describe shortly the 

process of solving a DCSP. 

A computation of a DCSP is a sequence of S0 →S1 →S2 →  … of transitions. It is successful 

or finished when it reaches a terminal state, which is written as S →*T. Similarly, a DSCP 

consists of a global sequence, which is build by local sequence sets of the participating part 

problems. This can be written as SG0 →SG1 →SG2 →…, where SGn is a final set of local 

sequences SL0 →SL1 →… that has reached a terminal state in itself or is in a configuration 

state, waiting for input from a dependency on another local configuration problem. This is 

shown in figure 3.  
 

 

Figure 3. Distributed configuration states without dependencies 
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After solving the local constraints in each location A, B and C, the global state SG3 has to be 

reached to solve the constraint system. This state can only be reached if no intermediate 

location came into an unsolvable state. The solution in such a case would be to negotiate a 

new set of input values for a specific location, so the global model would also be updated. In a 

concurrent design as described in the scenario, the need of the master product is the driving 

force. There is no possibility to automatically negotiate new values for the master model by a 

search algorithm or similar. A value change has to be brought to the attention of the designer 

as it is mostly to be decided “by hand”.    

The reasoning in a distributed setup has risks of disclosing internal information of the 

participating models. The consequence of this problem is shown in figure 4, where a 

constraint exists between parts of locations B and C. Therefore an agreement has to be 

reached between states SL0 at location C and SL1 at location B. 

 

 
Figure 4. Distributed configuration states with dependencies at SG2-SL0, SG1-SL1 

 

The steps get to know information from each other by the constraint. If this is unwanted, there 

is no possibility to complete global configuration, since the individual parts can’t complete 

the configuration. 

 

3.2 Information Propagation 
 

To examine the difficulties of unwanted information propagation in distributed configuration 

setups, we analyze the possibilities of information access in several situations. It is assumed 

that the parties have control over the access rights of the participating variables of the product 

models. A mechanism to achieve this is described in section 3. In the view of a “master 

product” it is essential to make a distinction between driving and driven parameters. A driving 

parameter has a constant assigned at the beginning of a propagation process.  

The value of a driven parameter is defined as a dependency or constraint on other driving or 

driven parameters. One driving parameter has to be in the dependency line, so that the 

depending values can be computed.  In figure 5 there are two situations, where A is dependant 

on local and remote variables. The upper situation is solvable, since A has access to B. In the 

lower situation there is the constraint set to B ∧ C, which can never be solved, since access to 

C is forbidden. If A needs access to C, it has to request access rights from the owner of C. 

After A knows C, the access rights of C have to remain attached to whatever happens with the 

knowledge provided by C, so that it can’t be propagated to another party. This is especially 

difficult in chained constraint setups. There has to be a negotiation method that prevents such 

setups between restricted information when the problem is formalized. 

SG0 
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SL1 SL1 
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Figure 5. Direct Information Access 
 

Figure 6 shows the problem of indirect information access. The value of C (upper situation) 

and B (lower situation) becomes known to A, although direct access to the respective 

parameters is not possible or allowed.  

 

Figure 6. Indirect Information Access 
 

This is not a flaw of access methods but by the logic system used to solve the DSCP. It was 

not designed to work in an area where restriction of information is necessary. It is inevitable 

that information gets propagated in the reasoning process. If it is annotated to reflect the 

users’ rights, it is possible to circumvent the users’ intention, if the reasoners don’t work in a 

secured environment where access is protocolled or the information is encrypted. 

 
4. Preserving IP in Constraint Reasoning 
 

As discussed above, the existing DCSP approaches need to have access to all involved 

information to compute a valid solution, which is then solved sequentially or in parallel. This 

in turn forces companies to fully open their models if they need to build an integrated view of 

a combined product. 

We will now present a solution that enables reasoning over a complex, distributed product 

model, while providing the possibility to preserve intellectual property. In opposite to the 

DSCP, the reasoning over distributed product models requires only the ability to export and 

import decided parameter values. Instead of opening arbitrary access on the participating 

models, we introduce a concept called “reasoning mediator” (RM) which serves as the 

interface definition. The RMs can be specifically configured to exclude information from the 
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reasoning process by reasoning over publicly announced knowledge only. There is no access 

to or views of knowledge that is not to be distributed outside a reasoning domain. Such 

knowledge will be regarded as uncertain knowledge. As a central meeting point for 

expression and solving of constraints, we suggest a blackboard-architecture where all publicly 

available information is stored and dependencies are negotiated. 

 

 

Figure 7. Information Access through a blackboard-architecture 
 

The information on accessible interfaces, reasoning rights and the respective values are 

broadcast through the RMs onto a blackboard as shown in figure 7. This has the advantage 

that there is no need for the part suppliers to communicate and exchange information directly. 

Also it serves as a common knowledge repository for all participating parties. Only the 

published information is known, there is no need for interaction deep inside the involved 

product models. The blackboard serves as a global interface definition.  

In order to preserve intellectual property, there is a need to mark which information is not 

allowed to be shared through a reasoning process. This can be done by specifically announce 

interface variables that can be used to access a model. Another difficulty lies in direct and 

transitive dependencies where one can determine the value of a local variable by questioning 

an external value. To reflect driving and driven parameters, we need two types of variables for 

the input and output direction. This would protect the internal model structure from deep 

access needs. 

To protect the data from being exposed to all parties, there are two possible methods: 
 

• Protect exchanged data with asymmetric encryption. This means that involved parties 

can communicate directly and but only the intended receiver can read the data 

adressed to him. 

• The transmitted data has to be kept in a secure environment. This can be realised by 

installing a communications-blackbox at each part supplier, through which he makes 

contact to the global model. The blackbox guards the security policies of data which it 

receives and sends.  
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Also the constraints represent valuable design knowledge, since they represent knowledge 

about geometric solutions. Consider the simple constraint C1: a=2*b. If both the variables “a” 

and “b” are accessible, one can determine the constraint function directly or an approximation 

of it by setting a value for “b” and observing the result in “a”. As consequence it might be 

also necessary to restrict the amount of access times on certain variables, thus giving the 

access providing company control of the process. The difficulty herein lies in the reasoning 

itself that can have access to restricted information by making a suitable request. 

To mark variable content that needs to stay private, we make an enhancement to the variable 

definition. A variable now consists of two parts, its value and a set of access rights that tells if 

it is available for local or external reasoning or not at all: 

 

    },,,{)},,(),...,,{( 11 RMiRMiRMiRMiinn CFRDRMRMXRMXX ==                   (8) 
 

The need of information hiding and IP protection is reflected by the access rights of the RMs. 

Each RMi is defined by a set of DRMi: Direction: Input/Output, RRMi: Values Range, FRMi:  

Access flags – user, times and CRMi: Boolean Configuration flag. 

The direction specifies the possible information flow, it can be allowed read access, write 

access or both. Access can be restricted to selected members of the blackboard. To avoid 

abuse of the provided information, there can be restriction of access times to reduce or keep 

track of information access to avoid reading out all possible configurations. To further hide 

configuration possibilities, the value range can be limited. The blackboard system has to be 

secured from being abused by a party. All transactions have to be monitored. This is 

specifically important for the reasoning mediator definition. The transaction logs have to be 

made available to the parties which have agreed on an interface mediator definition. 

The RMs function as enhanced variable descriptions and form a logic system on the 

blackboard, RMs can be constrained against each other. The reasoning takes place in two 

areas, on the blackboard and in the sub models. The interfacing between the sub models and 

the blackboard is accomplished through the enhanced functions of the RMs. Each model has a 

set of RMs which can be divided in sets of RMinput and RMoutput, based on their configuration 

of DRMi. 

If all members of RMinput are defined, then the model will come to a final state if it can be 

configured based on the input or a failed state if there is no such possibility. This decision can 

be made because the model is in the local view not constrained against other models. If the 

model comes into a final state, then all RMoutput variables are defined with a fitting value. 

After solving all constraints between the models, all RMoutput and all RMinput of the blackboard 

are defined. The master model can read the RMoutput and can come to a conclusion. If a model 

failed to configure, based on the given RMinput, the blackboard will remain in a (maybe 

temporary) failed state. It can be detected by the master model that there is no further solution 

by reading the states of the configuration flags. 

Compared to the direct access approach, a blackboard-architecture has the several advantages. 

The integration of uneven knowledge sources is transparently managed by the control system 

of the blackboard. Each knowledge source is independent which eases development and 

maintenance. The blackboard architecture allows participating applications to adapt to 

changing requirements more flexibly because it is application independent, and is easily 

applied to new problem domains.  
 

The basic knowledge on the blackboard is of three types: 
 

• Driving parameters 

• Result (or driven) parameters 

• Constraint definitions 
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A difficult task is to secure the protection of certain information. Once the information is 

further processed, it can be possible to infer what the unprocessed information was. Initial 

ideas to achieve this have be discussed in this section, a few additional problems will be 

addressed in section 5. Another aspect is that the access has to the knowledge has to be made 

platform independent so that companies can attach different systems to the blackboard (see 

also section 5). This way, different reasoning systems can come to a global solution. 

 
5. Extending Information model through UML 
 

Another problem when several models of different companies come together to form a 

uniform model is the multitude of used CAD-systems, formats and logical reasoning 

languages. 

As a tool to represent and model the information flow of driving and driven parameters we 

use the Unified Modelling Language (UML) [7], as it is a graphical modelling language that 

is widely known and suits the semantic requirements of the interconnection modelling. It can 

be used to model structural relationships of part assemblies within a specific domain [12]. 

UML provides a rich toolbox for describing concepts involved, such as class, state and 

activity diagrams. It is accompanied by the Object Constraint Language (OCL), which allows 

the declaration of restrictions on objects. The UML/OCL can be used to define relations 

between objects, which go further in the semantic expressiveness than conventional 

restrictions; it can be used to build a semantic network, which represents the product 

knowledge [5]. 
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In order to capture a wider range of possible relationships between objects and models, the 

power of expression has to be enriched. A promising way to achieve this is to use the object-

oriented paradigm in for the exchange of product development data. We will use the UML as 

a layer system do describe semantic dependencies as “is subpart”, “is used explicitly”, “is 

kind of” and “is related” and model the involved information flow between the models.  

The highest level of information flow is shown in figure 8, where the exchange of data 

between parts is modelled. Export and import paths are given as interfaces on packages. The 

packages represent subparts of the model. They can be described further using class diagrams 

and constraints. The constraints will have the extended semantics as described in section 4. In 

the packages the semantics known from the object orientation can be applied, such as 

inheritance and distribution of features.  

Common problems within the supply chain management during early design are the 

incompleteness of product specifications and uncertainty of which subparts to be included in 

the final product. The problem of incompleteness of supply is solved through a negotiation by 

UML. The parties sit together and exchange in effect a delta-table, where the basic 

specification and possible derivations of in- and output variables are fixed. A configuration 

party can rely on this table. If there is need to enhance certain components beyond the limits, 

the parties have to sit together to re-establish a new common domain for possible input and 

output values. The driving force is the part integrator who constructs the main product. He 

knows where incompleteness can arise in his configuration and have a placeholder put in the 

place that takes any input and outputs statically the minimal parameters that a final 

component should deliver. 

The problem of uncertainty which components to use, which also arises in early product 

development can be solved by using several product models in parallel, where each model 

uses another component. This way all possibilities can be played through. To minimize the 

number of effective models, they can also be unified into one model, where different 

subcomponents can be selected using an additional input parameter. This means that the main 

product manufacturer can cycle through different components in his model and test and 

validate several possible setups. 

 

We view attributes as driving parameters and methods as driven parameters. The methods are 

defined as taking variables as input. If the source of the variable comes from another object, it 

is marked as external. Constraints can be setup to choose the right component, as a Diesel or 

Petrol Engine. An example assembly is shown in the UML diagram in figure 9. 
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The engine is a component that needs to be included in the car. The car has certain 

requirements for the engine which it announces. The section for engine configuration will 

take this action and search for a configurator suited to generate the specification for an engine 

type. If the requested engine would be a diesel engine, the supplier would try to configure a 

diesel engine based on the input of the car manufacturer. The resulting specification is then 

sent back to the manufacturer or another involved party from which the configuration request 

came. The information that is being sent out is annotated as required in section 4. 

The UML layer makes it easier for the involved companies to decide between driving and 

driven parameters and to oversee the model dependencies. From the OCL comes the 

possibility to impose constraints on operations. The object oriented view is suited to model 

the IP aspects of the assembly setup, because it models the communication flow and shows 

how and where the information that leaves the domain of a supplier is used. This way 

participating companies can easily overlook the dependencies between parts and negotiate the 

publication of information. 

 

The use of the object oriented paradigm delivers several advantages in the modelling of 

product assemblies: 

 

Attribute encapsulation: Access to objects is only able from the outside; the inner structure 

is hidden from the user. 

Unity of data, methods and relations: Features of the objects can be used transparently and 

provide for a natural treatment of problem expression. 

Communication: The solution of a given problem is derived through the communication of 

the participating objects by message passing. 

Classes: Classes are blueprints for objects; they express generalization and specialisation, 

which can be used to generate new and modified objects and reuse already defined structures 

in a new way, preserving the intent of the original creator. 

 
6. Conclusion    
 

We have discussed the problems of IP protection arising with complex product models on 

case scenarios. We have shown how they are normally solved using constraints in a 

distributed environment. In distributed product models, the distribution of intellectual 

property has to be limited to secure company knowledge. To limit the interaction between 

participating companies we have proposed a blackboard-architecture which serves both as 

interface definition and place for information exchange. To support IP restriction we have 

introduced interface mediators that specify attributes for information handling and can be 

configured to exclude certain property values. The establishment of automatic information 

flow between product models of different supplying companies makes it possible for a 

“master manufacturer” to react faster to customer needs. The proposed architecture can also 

directly be used in an intelligent CAD system where it serves to make design decisions 

automatically based on the communication between the connected product models. 
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