
 1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN

ICED 05 MELBOURNE, AUGUST 15 – 18, 2005

SEMANTICS AND VALIDATION OF LARGE INTER-COMPANY

PRODUCT MODELS

Sascha Opletal, Dieter Roller

Abstract

A highly dynamic industry needs to use synergetic effects to reduce production cost and the

time to market. A common production scheme in e.g. the automotive industry is the support

of the main manufacturer by several part suppliers. Usually those part suppliers have their

own product model which represents their intellectual property. Some of them provide fixed

standard components; others provide configurable designs and hand out abstract black box

configuration systems for the main manufacturer. As development progresses, the product

models are changed and subject to an evolving process. An integrated model of all parts and

their inner details would make the intellectual property of a part supplier available to the main

manufacturer and the part supplier would be obsolete as knowledge provider. In this paper we

propose an integrated product model through well defined reasoning interfaces. Those

interfaces are announced on a blackboard and can be adjusted to only release information

which is green-lighted by the original part manufacturer.

Keywords: intellectual property, knowledge management, product models, reasoning, CAD

1. Introduction

The global market demand for shorter product cycles requires a fundamental change in the

involved manufacturing and planning processes. In recent years it was attempted to make the

product development more efficient by viewing it as an integrated effort. The organisation of

the information flow of a company is researched and optimized within the CIM (Computer

Integrated Manufacturing). In CIM the focus lies in the interactions between CAD/CAM and

the processes involved in Production Planning and Control [1]. The knowledge which is

shared in a CIM environment has direct effect on the design process and all involved work

units of the production process. The focus of this paper is the exchange of product model

information between companies and ensuring that vital company knowledge is kept secret

while preserving the ability to reason over the product model. For a successful integration of a

component in a greater design project, it is necessary to have access to the relevant

information without getting access to restricted knowledge.

A variety of methods have been researched on how to express and automate certain aspects of

the design process [2]. First generation systems used fixed geometric primitives to build

models. The evolution to parametric models introduced the constraints and form features and

enabled the efficient generation of product variants. Often the main focus for a designer is not

the creation of new products from scratch but the adaptation of an existing product in order to

evolve it to the next product generation. Classic methods to describe parametric object

dependencies include constraints and form features. First the constraints were introduced to

 2

express ground, dimensional, geometric and algebraic relations. The concept of form features

was later added to provide a kind of template to predefine certain aspects of a functional

module [2]. The form features allow for a greater expression of valid objects. However the

relationships between disjoint objects and models can be difficult, if they don’t use the same

structural expression. Typical problems which are considered in this paper are the interaction

between isolated components distributed over several companies and the integration into a

global product model. It should be possible to validate the model, regardless of prohibited

access to knowledge which should stay in the company that is supplying the component.

As an example scenario where rich product knowledge is captured within a product model is

the “mass customization” of products, which can be done efficiently by using a product

configurator. The objective of product configurators is to provide a CAD system for time

efficient variant generation and validation [3]. This is achieved by integrating enough design

knowledge into the system in order to have the system propose obvious and intended design

steps or even execute them automatically, thus generating valid product variants.

Unfortunately, most product configurators are standalone applications which will not allow

the import and export of product data from other configurators, as this would mean giving out

all the companies’ vital product knowledge. Product configurators use a set of rules to

predetermine the possible characteristics of a product. By solving the rules on a given input,

the machine can decide if it is possible to build a product or not and also reach a specified

product quality. Learning heuristics can help to solve the configuration problem [4].

Figure 1. Example Scenario of parametric or variational product design

As example consider the situation shown in figure 1, where a redesign of a product is needed

at a company “C” to create an advanced product. A product design can be captured through

parametric modelling, if the product stays overall the same, with only minor adjustments, that

can be derived from the original product design and be expressed in parametric or variational

concepts, such as constraints. A redesign could involve the replacement of components of

supplier “X” by components of another supplier “Y” because supplier “Y” provides a

component of higher quality. For the redesign there is a need to access the product data of

supplier “Y” to introduce and test the new component. Of high importance to supplier “Y” is

the distinction between public and private knowledge, since supplier “Y” has an interest in

keeping his intellectual property secret.

One solution which is widely adapted by the suppliers is to hand out unsharp information,

through a model catalogue or more sharply through selected specifications. This means that

the needed values have to be transferred by hand into the used product model at company

“C”. Another approach which abstracts over the details of the product model is to specify a

component through a standalone configuration application which can be used if the interfaces

Redesign/Variant

Parts to be adapted

or reused

Doors

Windows

Engines

Axis-Systems

Wheels

Chassis

…

Redesign/Variant

 3

are known. Normally a high amount of useful information is hidden from the integrator. There

are several approaches to support the design task by knowledge based systems [5]. For those

systems it only the homogenous situation within one company is considered.

2. Related Work

Constraint programming and reasoning has a long history. The use of constraints is not fixed

to the domain of CAD but stretches over a wide range of application fields where the solution

of combinatorial problems, decision problems or reasoning on unsharp information is needed.

Current research, after the seminal works of Yokoo, Ishida and Kuwabara [6] focuses strongly

on the application of distributed constraints using agent networks.

Recently developed constraint languages include:

• The Object Constraint Language (OCL) [7] which is a part of UML

• Mozart [8], a development platform for intelligent, distributed applications based on

the programming language Oz. It has an emphasis on distributed constraint solving.

• The ECLIPSE Constraint Logic Programming System [9], which contains several

constraint solver libraries, a high-level modelling and control language, interfaces to

third-party solvers, an integrated development environment and interfaces for

embedding into host environments.

3. Constraint Model and Distributed Constraint Satisfaction (DCSP)

In this paragraph we will further discuss the example scenario and show why it can not be

solved using regular constraint programming. Constraints are a classic method to describe

component structures in CAD. We give a short introduction in constraint logic programming

to show the applied methods and motivate our approach in comparison. For further reference

consult [10].

Constraints in the domain of CAD can be divided into three groups:

• Absolute Constraints

• Geometric Constraints

• Algebraic or Dimensional Constraints

Absolute Constraints represent fixed values in a design system, such as coordinates or fixed

expressions (constants). Geometric constraints express relations between geometric objects,

such as “is parallel to” or “is perpendicular to”. Algebraic constraints describe functional

dependencies between parameters of objects. The task of finding a valid geometric

expression, while fulfilling all active constraints, is described through the constraint

satisfaction problem (CSP). If the problem is distributed across several domains, we speak of

a distributed CSP (DCSP).

For a constraint system to be solved by a computer, it is formalized to be used with a calculus.

A calculus is a set of transformation rules. It uses a step called resolution to derive the next

step by applying a transformation rule. Such a calculus can also be viewed as a state-transition

system. The transition system is defined as a Triple (Z, T,a), where S is a set of states, T ⊆

Z is the set of terminal states and a ∈ Z×Z is the transition relation, for which holds the

following:

S a S´ for all terminal states S ∈ T and all S´∈ Z.

 4

We will now use a small transition system and a calculus to build a DCSP for the scenario.

Each state in the transition system is equal to an assignment of values to the constraint system

or a transformation of its rules. A transition from one state to another is reached by applying a

resolution step (see section 3.1). Under the precondition that the conditions (or constraints)

are fulfilled, a transition can be made to another state, starting from the one on which it was

defined.

This can be written as:
SS

Condition

Condition

n

′a

...

1

It is possible to capture several aspects of the situation of the scenario described in section 1,

through the use of the distributed constraint satisfaction problem (DCSP). The DCSP is a CSP

with the following enhancements:

• Each location of the DCSP forms a local reasoning domain

• The reasoning domains are interconnected through interfaces

• All reasoning domains together form the DCSP

Depending on the distributed nature of a DCSP setup, there are several possibilities in the

information flow to resolve constraint satisfaction. Several distributed algorithms exist to

solve the DCSP [6]; the main difference between the solutions is, if the processing is

sequential or if it has to be in parallel. Distributed constraint setups are shown in figure 2.

Both communication models in figure 2 are designed to have an information flow towards a

“master product”. The master product functions as described in the example scenario and

represents a product in which to integrate other products from part delivering companies.

Figure 2. Information flow with inter-subpart constraints

On the left side in figure 2, the participating suppliers have equal communication rights. This

setup however requires the involved parties’ models to communicate directly. This can lead to

problems when IP protection is needed. In order to communicate between models, the part

Master product Master product

Subpart A

A

Subpart B Subpart B

Subpart A

 5

suppliers have to open the models for a competitor. This unwanted situation can be resolved

partly, if the setup on the right side of figure 2 is used. Here the part suppliers only

communicate through the master. The master synchronises communication, therefore the

suppliers have to open the model only to the master company. There can be situations where

this is also unwanted. The master also gets deep knowledge of the product, when constraints

have to be established towards inner values of a subpart and when the information for the

constraint resolution runs through the master. This leads to a need for methods of information

hiding.

A constraint model serves to define possible relations between different values of geometric

objects. The goal is to solve the constraint satisfaction problem, which is defined as one or all

sets of variable values to a given constraint model.

The CSP consists of a finite set of variables X and domains D to which each variable is

associated and a set of constraints C.

},...,{},,...,{ 11 nn CCCXXX == (1)

A constraint Ci consists of two parts, the subset Si of variables on which it is defined and the

associated relation reli:

},...,{
)(1 ijiii XXS = (2)

)(1
:

ijiiii DDrelS ××⊆ L (3)

As example, a simple constraint system for Boolean algebra can be set up as follows:

C ::= true | false | X B= Y | -X B= Y | X B∧ Y B= Z | X B∨ Y B= Z | X B⊕ Y B= Z | C ∧ C

3.1 CLP-calculus for constraint solving

We will describe shortly a calculus for the processing and solving of a CSP, based on

constraint handling rules (CHR) [11]. The advantage of CHR is to be able to cover new

domains by providing user-defined constraints. The rules of similar systems are mostly fixed.

The solver of the CHR is able to transform a constraint system by using the following rules:

• Simplification

• Normalization

• Propagation

• Entailment

• Solving

• Optimization

• Consistency check

A user defined constraint [11] for less-than-or-equal (=<) can be defined using syntactical

equality (=) in three relations:

• Reflexivity: A=<B ↔ X=Y | true

• Antisymmetry: A=<B ∧ B=<A ↔ A=B

• Transitivity: A=<B ∧ B=C → A=<C

The operational semantics of CHR use is given by a transition system with initial and final

states. The sequence of the solution steps is normally not deterministic and often relies on

 6

search for value sets if there resolution steps can’t be applied. Failed states have to be detected

to determine the unsolvability or to start some sort of backtracking to come to a final state.

A CHR-calculus works on states ν〉〈 DEF ,, , where F are the constraints remaining to be

solved, and E and D are constraints that have been accumulated and solved so far. The initial

state has the form ν〉〈 truetrueF ,, , the failed state ν〉〈 falseEF ,, and the final state

ν〉〈 DEtrue ,, . The following rules are applied to process a constraint system [11]:

Solve:
DDCCTandinbuiltisCif

DEFDEFC

′↔∧=−

〉′〈〉∧〈

)(|

,,,, aν
 (4)

Introduce:
.

,,,,

constrCHRaisHif

DEHFDEFH νν 〉∧〈〉∧〈 a
 (5)

Simplify:
)(|)|(

,,,,

GHHxDCTandPinBGHif

DHHEFBDEHF

∧′=∃→=↔

〉∧′=∧〈〉∧′〈 νν a
 (6)

Propagate:
)(|)|(

,,,,

GHHxDCTandPinBGHif

DHHEHFBDEHF

∧′=∃→=→

〉∧′=∧′∧〈〉∧′〈 νν a
 (7)

The discussed constraint model of a CSP however is sufficient to fully describe the scenario

of section 1, if all parties agree upon full information sharing. We will describe shortly the

process of solving a DCSP.

A computation of a DCSP is a sequence of S0 →S1 →S2 → … of transitions. It is successful

or finished when it reaches a terminal state, which is written as S →*T. Similarly, a DSCP

consists of a global sequence, which is build by local sequence sets of the participating part

problems. This can be written as SG0 →SG1 →SG2 →…, where SGn is a final set of local

sequences SL0 →SL1 →… that has reached a terminal state in itself or is in a configuration

state, waiting for input from a dependency on another local configuration problem. This is

shown in figure 3.

Figure 3. Distributed configuration states without dependencies

SG0

SL0

SL1 SL1

SL0

SG3

SL0

SG2 SG1

Location A Location B Location C

 7

After solving the local constraints in each location A, B and C, the global state SG3 has to be

reached to solve the constraint system. This state can only be reached if no intermediate

location came into an unsolvable state. The solution in such a case would be to negotiate a

new set of input values for a specific location, so the global model would also be updated. In a

concurrent design as described in the scenario, the need of the master product is the driving

force. There is no possibility to automatically negotiate new values for the master model by a

search algorithm or similar. A value change has to be brought to the attention of the designer

as it is mostly to be decided “by hand”.

The reasoning in a distributed setup has risks of disclosing internal information of the

participating models. The consequence of this problem is shown in figure 4, where a

constraint exists between parts of locations B and C. Therefore an agreement has to be

reached between states SL0 at location C and SL1 at location B.

Figure 4. Distributed configuration states with dependencies at SG2-SL0, SG1-SL1

The steps get to know information from each other by the constraint. If this is unwanted, there

is no possibility to complete global configuration, since the individual parts can’t complete

the configuration.

3.2 Information Propagation

To examine the difficulties of unwanted information propagation in distributed configuration

setups, we analyze the possibilities of information access in several situations. It is assumed

that the parties have control over the access rights of the participating variables of the product

models. A mechanism to achieve this is described in section 3. In the view of a “master

product” it is essential to make a distinction between driving and driven parameters. A driving

parameter has a constant assigned at the beginning of a propagation process.

The value of a driven parameter is defined as a dependency or constraint on other driving or

driven parameters. One driving parameter has to be in the dependency line, so that the

depending values can be computed. In figure 5 there are two situations, where A is dependant

on local and remote variables. The upper situation is solvable, since A has access to B. In the

lower situation there is the constraint set to B ∧ C, which can never be solved, since access to

C is forbidden. If A needs access to C, it has to request access rights from the owner of C.

After A knows C, the access rights of C have to remain attached to whatever happens with the

knowledge provided by C, so that it can’t be propagated to another party. This is especially

difficult in chained constraint setups. There has to be a negotiation method that prevents such

setups between restricted information when the problem is formalized.

SG0

SL0

SL1 SL1

SL0

SG3

SL0

SG2 SG1

Location A Location B Location C

 8

Figure 5. Direct Information Access

Figure 6 shows the problem of indirect information access. The value of C (upper situation)

and B (lower situation) becomes known to A, although direct access to the respective

parameters is not possible or allowed.

Figure 6. Indirect Information Access

This is not a flaw of access methods but by the logic system used to solve the DSCP. It was

not designed to work in an area where restriction of information is necessary. It is inevitable

that information gets propagated in the reasoning process. If it is annotated to reflect the

users’ rights, it is possible to circumvent the users’ intention, if the reasoners don’t work in a

secured environment where access is protocolled or the information is encrypted.

4. Preserving IP in Constraint Reasoning

As discussed above, the existing DCSP approaches need to have access to all involved

information to compute a valid solution, which is then solved sequentially or in parallel. This

in turn forces companies to fully open their models if they need to build an integrated view of

a combined product.

We will now present a solution that enables reasoning over a complex, distributed product

model, while providing the possibility to preserve intellectual property. In opposite to the

DSCP, the reasoning over distributed product models requires only the ability to export and

import decided parameter values. Instead of opening arbitrary access on the participating

models, we introduce a concept called “reasoning mediator” (RM) which serves as the

interface definition. The RMs can be specifically configured to exclude information from the

Network

A=B A B

A=B ∧ C

A

B

C

access allowed

access prohibited

Network

A=B A B

A=B or A=C
A B

C

B=C

C

access allowed

access prohibited

 9

reasoning process by reasoning over publicly announced knowledge only. There is no access

to or views of knowledge that is not to be distributed outside a reasoning domain. Such

knowledge will be regarded as uncertain knowledge. As a central meeting point for

expression and solving of constraints, we suggest a blackboard-architecture where all publicly

available information is stored and dependencies are negotiated.

Figure 7. Information Access through a blackboard-architecture

The information on accessible interfaces, reasoning rights and the respective values are

broadcast through the RMs onto a blackboard as shown in figure 7. This has the advantage

that there is no need for the part suppliers to communicate and exchange information directly.

Also it serves as a common knowledge repository for all participating parties. Only the

published information is known, there is no need for interaction deep inside the involved

product models. The blackboard serves as a global interface definition.

In order to preserve intellectual property, there is a need to mark which information is not

allowed to be shared through a reasoning process. This can be done by specifically announce

interface variables that can be used to access a model. Another difficulty lies in direct and

transitive dependencies where one can determine the value of a local variable by questioning

an external value. To reflect driving and driven parameters, we need two types of variables for

the input and output direction. This would protect the internal model structure from deep

access needs.

To protect the data from being exposed to all parties, there are two possible methods:

• Protect exchanged data with asymmetric encryption. This means that involved parties

can communicate directly and but only the intended receiver can read the data

adressed to him.

• The transmitted data has to be kept in a secure environment. This can be realised by

installing a communications-blackbox at each part supplier, through which he makes

contact to the global model. The blackbox guards the security policies of data which it

receives and sends.

M: Require Part_A_Dimension = …

M: Import_Part_B_Dimension

A: Part_A_Dimension = …

{restricted to M}

B: if Part_A_Dimension =>

Part_B_Dimension is 5

{access not allowed}

Imp_Path

Subpart A

Master Product

Subpart B

Exp_Path

h

 10

Also the constraints represent valuable design knowledge, since they represent knowledge

about geometric solutions. Consider the simple constraint C1: a=2*b. If both the variables “a”

and “b” are accessible, one can determine the constraint function directly or an approximation

of it by setting a value for “b” and observing the result in “a”. As consequence it might be

also necessary to restrict the amount of access times on certain variables, thus giving the

access providing company control of the process. The difficulty herein lies in the reasoning

itself that can have access to restricted information by making a suitable request.

To mark variable content that needs to stay private, we make an enhancement to the variable

definition. A variable now consists of two parts, its value and a set of access rights that tells if

it is available for local or external reasoning or not at all:

 },,,{)},,(),...,,{(11 RMiRMiRMiRMiinn CFRDRMRMXRMXX == (8)

The need of information hiding and IP protection is reflected by the access rights of the RMs.

Each RMi is defined by a set of DRMi: Direction: Input/Output, RRMi: Values Range, FRMi:

Access flags – user, times and CRMi: Boolean Configuration flag.

The direction specifies the possible information flow, it can be allowed read access, write

access or both. Access can be restricted to selected members of the blackboard. To avoid

abuse of the provided information, there can be restriction of access times to reduce or keep

track of information access to avoid reading out all possible configurations. To further hide

configuration possibilities, the value range can be limited. The blackboard system has to be

secured from being abused by a party. All transactions have to be monitored. This is

specifically important for the reasoning mediator definition. The transaction logs have to be

made available to the parties which have agreed on an interface mediator definition.

The RMs function as enhanced variable descriptions and form a logic system on the

blackboard, RMs can be constrained against each other. The reasoning takes place in two

areas, on the blackboard and in the sub models. The interfacing between the sub models and

the blackboard is accomplished through the enhanced functions of the RMs. Each model has a

set of RMs which can be divided in sets of RMinput and RMoutput, based on their configuration

of DRMi.

If all members of RMinput are defined, then the model will come to a final state if it can be

configured based on the input or a failed state if there is no such possibility. This decision can

be made because the model is in the local view not constrained against other models. If the

model comes into a final state, then all RMoutput variables are defined with a fitting value.

After solving all constraints between the models, all RMoutput and all RMinput of the blackboard

are defined. The master model can read the RMoutput and can come to a conclusion. If a model

failed to configure, based on the given RMinput, the blackboard will remain in a (maybe

temporary) failed state. It can be detected by the master model that there is no further solution

by reading the states of the configuration flags.

Compared to the direct access approach, a blackboard-architecture has the several advantages.

The integration of uneven knowledge sources is transparently managed by the control system

of the blackboard. Each knowledge source is independent which eases development and

maintenance. The blackboard architecture allows participating applications to adapt to

changing requirements more flexibly because it is application independent, and is easily

applied to new problem domains.

The basic knowledge on the blackboard is of three types:

• Driving parameters

• Result (or driven) parameters

• Constraint definitions

 11

A difficult task is to secure the protection of certain information. Once the information is

further processed, it can be possible to infer what the unprocessed information was. Initial

ideas to achieve this have be discussed in this section, a few additional problems will be

addressed in section 5. Another aspect is that the access has to the knowledge has to be made

platform independent so that companies can attach different systems to the blackboard (see

also section 5). This way, different reasoning systems can come to a global solution.

5. Extending Information model through UML

Another problem when several models of different companies come together to form a

uniform model is the multitude of used CAD-systems, formats and logical reasoning

languages.

As a tool to represent and model the information flow of driving and driven parameters we

use the Unified Modelling Language (UML) [7], as it is a graphical modelling language that

is widely known and suits the semantic requirements of the interconnection modelling. It can

be used to model structural relationships of part assemblies within a specific domain [12].

UML provides a rich toolbox for describing concepts involved, such as class, state and

activity diagrams. It is accompanied by the Object Constraint Language (OCL), which allows

the declaration of restrictions on objects. The UML/OCL can be used to define relations

between objects, which go further in the semantic expressiveness than conventional

restrictions; it can be used to build a semantic network, which represents the product

knowledge [5].

RM: Car

RM: Engine

Exp_Req_Space

Exp_heat_dissipation

1

1

RM: Lights

RM: Gear

RM: Cooling
array

Imp_Heat_Dissipation RM: Electrical
System

Imp_Req_Type

Imp_Electrical_Req_Fan

Exp_Req_Type

Exp_Electrical_Req_Fan

Exp_Electrical_Req_Lights

Imp_Electrical_Req_Lights

1

1

1

1

Imp_Req_Space

Exp_Req_Space

Im
p

_
R

e
q
_
S

p
a

c
e

Exp_Req_Space

Exp_Req_Space

1

1

1

1

1

1

1

1

1

1 Im
p

_
R

e
q
_
S

p
a

c
e

Im
p

_
R

e
q
_
S

p
a

c
e

{Constraint A}

{Constraint B}

Figure 8. Blackboard global view using UML

 12

In order to capture a wider range of possible relationships between objects and models, the

power of expression has to be enriched. A promising way to achieve this is to use the object-

oriented paradigm in for the exchange of product development data. We will use the UML as

a layer system do describe semantic dependencies as “is subpart”, “is used explicitly”, “is

kind of” and “is related” and model the involved information flow between the models.

The highest level of information flow is shown in figure 8, where the exchange of data

between parts is modelled. Export and import paths are given as interfaces on packages. The

packages represent subparts of the model. They can be described further using class diagrams

and constraints. The constraints will have the extended semantics as described in section 4. In

the packages the semantics known from the object orientation can be applied, such as

inheritance and distribution of features.

Common problems within the supply chain management during early design are the

incompleteness of product specifications and uncertainty of which subparts to be included in

the final product. The problem of incompleteness of supply is solved through a negotiation by

UML. The parties sit together and exchange in effect a delta-table, where the basic

specification and possible derivations of in- and output variables are fixed. A configuration

party can rely on this table. If there is need to enhance certain components beyond the limits,

the parties have to sit together to re-establish a new common domain for possible input and

output values. The driving force is the part integrator who constructs the main product. He

knows where incompleteness can arise in his configuration and have a placeholder put in the

place that takes any input and outputs statically the minimal parameters that a final

component should deliver.

The problem of uncertainty which components to use, which also arises in early product

development can be solved by using several product models in parallel, where each model

uses another component. This way all possibilities can be played through. To minimize the

number of effective models, they can also be unified into one model, where different

subcomponents can be selected using an additional input parameter. This means that the main

product manufacturer can cycle through different components in his model and test and

validate several possible setups.

We view attributes as driving parameters and methods as driven parameters. The methods are

defined as taking variables as input. If the source of the variable comes from another object, it

is marked as external. Constraints can be setup to choose the right component, as a Diesel or

Petrol Engine. An example assembly is shown in the UML diagram in figure 9.

-Req_Space_Engine
-Power

Engine

+Req_Space_Gear = external() : Length
+Needed_Internal_Space = 1,5*Req_Space_Gear()

-Allowed_Space_of_Gear : float

Car

Imp_Req_Space_Gear

-Req_Space_Engine
-Power
-Uses_Diesel

Engine: Diesel

-Req_Space_Engine
-Power
-Uses_Petrol

Engine: Petrol

Exp_Req_Space_Engine

{Constraint C}

1

1

1 1

11

Imp_Req_Type

1 1

Figure 9. Blackboard setup using UML

 13

The engine is a component that needs to be included in the car. The car has certain

requirements for the engine which it announces. The section for engine configuration will

take this action and search for a configurator suited to generate the specification for an engine

type. If the requested engine would be a diesel engine, the supplier would try to configure a

diesel engine based on the input of the car manufacturer. The resulting specification is then

sent back to the manufacturer or another involved party from which the configuration request

came. The information that is being sent out is annotated as required in section 4.

The UML layer makes it easier for the involved companies to decide between driving and

driven parameters and to oversee the model dependencies. From the OCL comes the

possibility to impose constraints on operations. The object oriented view is suited to model

the IP aspects of the assembly setup, because it models the communication flow and shows

how and where the information that leaves the domain of a supplier is used. This way

participating companies can easily overlook the dependencies between parts and negotiate the

publication of information.

The use of the object oriented paradigm delivers several advantages in the modelling of

product assemblies:

Attribute encapsulation: Access to objects is only able from the outside; the inner structure

is hidden from the user.

Unity of data, methods and relations: Features of the objects can be used transparently and

provide for a natural treatment of problem expression.

Communication: The solution of a given problem is derived through the communication of

the participating objects by message passing.

Classes: Classes are blueprints for objects; they express generalization and specialisation,

which can be used to generate new and modified objects and reuse already defined structures

in a new way, preserving the intent of the original creator.

6. Conclusion

We have discussed the problems of IP protection arising with complex product models on

case scenarios. We have shown how they are normally solved using constraints in a

distributed environment. In distributed product models, the distribution of intellectual

property has to be limited to secure company knowledge. To limit the interaction between

participating companies we have proposed a blackboard-architecture which serves both as

interface definition and place for information exchange. To support IP restriction we have

introduced interface mediators that specify attributes for information handling and can be

configured to exclude certain property values. The establishment of automatic information

flow between product models of different supplying companies makes it possible for a

“master manufacturer” to react faster to customer needs. The proposed architecture can also

directly be used in an intelligent CAD system where it serves to make design decisions

automatically based on the communication between the connected product models.

References

[1] U. Rembold, B.O. Nnaji, A. Storr: Computer Integrated Manufacturing and Engineering,

Addison-Wesley, 1994

[2] J. Shah, M. Mäntylä: Parametric and Feature Based CAD/CAM: Concepts, Techniques

and Applications, John Wiley & Sons, 1995

 14

[3] M. Mešina, D. Roller: Configuration management using standard tools, in: Perspectives

from Europe and Asia on Engineering Design and Manufacture, X.-T. Yan, Ch.-Y. Jiang,

N. P. Juster, eds., Kluwer Academic Publishers, 2004, pp. 645-658

[4] D. Roller, I. Kreuz: Selecting and parameterising components using knowledge based

configuration and a heuristic that learns and forgets, in: Computer-Aided Design, Elsevier,

Vol 35/12, 2003, pp. 1085-1098

[5] D. Roller, O. Eck, S. Dalakakis: Knowledge based support of Rapid Product Develop-

ment, in: Journal of Engineering Design, Taylor & Francis Ltd, Vol. 15, No. 4, 2004, pp.

367 – 388

[6] M. Yokoo, et.al.: The Distributed Constraint Satisfaction Problem: Formalization and

Algorithms. IEEE Transactions on Knowledge and DATA Engineering 10(5), 1998

[7] UML Specification, Version 2.0, Object Management Group (OMG)

 http://www.uml.org/

[8] The Mozart Programming System

 http://www.mozart-oz.org/

[9] The ECLiPSe Constraint Logic Programming System, Imperial College, London

http://www.icparc.ic.ac.uk/eclipse/

[10] T. Frühwirth, S. Abdennadher: Essentials of Constraint Programming, Springer, New

York, 2003

[11] T. Frühwirth: Theory and practice of constraint handling rules. The Journal of Logic

Programming, 37, P. Stuckey, K. Marriot,eds., 1998, pp. 95-138

[12] R. Hochgeladen, P. Vyas: Entwurf komplexer Zusammenbauten mit UML, CAD-CAM

Report 3/2004, Dressler Verlag, 2004

Sascha Opletal

University of Stuttgart

Institute of Computer-aided Product Development Systems

Universitätsstr. 38

Germany

Phone: +49-711-7816-335

Fax: +49-711-7816-320

E-mail: sascha.opletal@informatik.uni-stuttgart.de

