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Abstract 
 
Robust design optimization problems are known to be computationally expensive as it 
involves identification of designs that are both good in performance and at the same time 
have minimal variance in performance among its neighbors. Assessment of performance 
variance for every design is computationally expensive as numerous designs in the 
neighborhood needs to be assessed and evaluation of a design could itself involve expensive 
analysis based on computational fluid dynamics (CFD) or finite element methods (FEM). 
Approximations can be used in lieu of actual assessments to compute the variance of 
performance among neighboring designs and their accuracy can be maintained via periodic 
training. In this paper, we investigate the performance of a radial basis function (RBF) 
surrogate model and compare its performance with models relying on actual evaluations and 
a first order Taylor series model. Our optimization model relies on a population based, zero 
order, stochastic algorithm and it has been implemented using C++ and MPI to make use of 
multiple processors. Two engineering design optimization examples have been used as case 
studies to observe the behavior of the surrogate models. Preliminary observations suggest that 
the Taylor series model is capable of containing the computational cost within affordable 
limits while maintaining an acceptable level of accuracy. The RBF model did not perform 
well partly due to its global approximation scheme. 
 
Keywords: Radial Basis Function, Taylor Series, Neighborhood Evaluation. 

 
1. Introduction 
 

In order for a design to be transformed to a real life product, it is necessary to ensure that its 
performance does not degrade largely under variations in the operating conditions or due to 
parametric variations that might creep in during the course of manufacturing. Taguchi (1986, 
1987) originally proposed the concept of robustness that aims to locate designs that are 
insensitive to the variations using a loss function. In presence of constraints, the notion of 
feasibility robustness refers to identifying solutions that are feasible and remain feasible 
under expected variations. In order to compute the performance of neighboring solutions, 
various algorithms have been proposed over the years. They can be broadly classified into 
two categories: (a) gradient based approaches and (b) stochastic methods. 
 
Fundamentally, gradient based approaches are used to compute the sensitivity information of 
the objective and the constraint functions to arrive at the expected performance values and the 
performance variances. Models in this category include: 

• First order second moment (FOSM) method introduced by Lee and Park (2001). 
• Second order second moment (SOSM) method introduced by Luc (2001). 
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• Reliability based design optimization (RDBO) method proposed by Tu and Choi 
(1999). 

• Advanced first order second moment (AFOSM) method proposed by Jung and Lee 
(2002). 

 
The gradient based methods have the following limitations in the context of some robust 
design optimization problems:  

• Design problems often have discrete variables or have objective and constraint 
functions that have functional and slope discontinuity. Gradient based neighborhood 
assessments cannot be effectively applied to such problems. 

• Since gradient based approaches are point improvement methods, they lead to a single 
solution that limits the flexibility of a designer to choose among multiple designs. 

 
These limitations have led to the development of stochastic methods. Coit and Smith (1996), 
Tustsui and Ghosh (1997) observed that such methods are quite effective for robust design 
optimization problems. Jin and Sendhoff (2003) approached to solve the robust design 
problem as a multiobjective optimization problem while considering performance 
maximization and performance variance minimization. Ray (2002) introduced a robust design 
optimization algorithm that did not rely on surrogates for neighborhood assessments and thus 
was too expensive for real life problems. All these attempts did not pay adequate attention to 
the cost of computation and did not make use of surrogates and thus is difficult to use for 
practical problems.  
 
This paper introduces a model for robust optimal design. The underlying optimization 
algorithm relies on a population based, zero order, stochastic model. The robust design 
optimization problem is modeled as bi-objective problem i.e. maximize performance and 
minimize the variance of the performance among its neighbors. The neighborhood 
performance assessments of a design are based on surrogates while the performance of the 
design itself is computed using actual analysis. The algorithm employs a novel constraint 
handling mechanism that takes the feasibility of an individual and its neighborhood feasibility 
into consideration. The algorithm is implemented using a master-slave topology to make use 
of multiple processors. The details of the model are presented in Section 2 while the 
numerical examples are presented in Section 3.  
 
 
2. Mathematical Formulation 
 
A generic constrained robust design optimization problem can be expressed as follows: 

Minimize 
[ ])(f)(ff xx 21=  (6) 

where ]xxx[ nΚ21=x  is the vector of n design variables, )(f x1 is the objective that 
needs to be minimized and )(f x2 is the variance of )(f x1  computed using K neighbors 
randomly created in the hypervolume of the neighborhood of x defined using 

]xxxxxx[ nn ∆+∆+∆+ Κ2211  and ]xxxxxx[ nn ∆−∆−∆− Κ2211 . 
Subject to: 

qiag ii ,1,2,,)x( Κ=≥  (7) 
where  q is the number of inequality constraints. 
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For a set of M candidate solutions, the objectives can be represented using a matrix form as 
follows: 
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Where f11 denotes the value of objective 1 for candidate solution 1. For each candidate 
solution, the constraint satisfaction vector ]ccc[ qΚ21=c is given by  

 

 
(9) 

For the above ic 's, ic  = 0 indicates the ith constraint is satisfied, whereas ic > 0 indicates the 
violation of the constraint. The constraint matrix for a population of M candidate solutions 
assumes the form 
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In order to asses the neighborhood feasibility of the ith individual, qiqiqi ccc 221 Λ++ is 
computed where 1+qic  denotes the number of violations of the first constraint among k 
neighbors where k is an user defined neighborhood size. Thus the modified constraint matrix 
for the constrained robust optimal design problem assumes the form 
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(11) 

 
The pseudocode of the algorithm is presented below:   
 

START 
Initialize a Population, 0=gen and Specify γλ ,  
Evaluate Individuals to compute )(1 xf and constraints ]ccc[c(x) qΚ21=  
Create a Surrogate Model to Approximate )x(f1 and ]ccc[c(x) qΚ21=  
While <gen λ Do 
           1+= gengen  
            Rank Solutions 
            Elite Identification and Preservation 
            To Fill the remaining members of the Population Do  
                        Select Partners for Mating via Roulette Wheel based on fitness 
                        Generate a Child via Recombination 
                        Call Actual Function Evaluations to Compute )(f x1 and constraints   
                        ]ccc[ qΚ21=c(x)  for the Child. 
                        Call Surrogate Model to compute Performance of Neighbors of the Child. 
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Where λ denotes the maximum number of generations allowed for the evolution process and 
γ denotes the periodic retraining frequency of the surrogate model. The neighborhood 

sample size and the expected range of variation are user defined inputs.  
 
The pseudo code of the Elite Identification and Preservation process is as follows: 

where iVC is the distance of the closest neighbor of the ith individual in the variable space and 

iOC  is the distance of the closest neighbor of the ith individual in the objective space. These 

iVC and iOC ’s are tranformed to ranks. When all the solutions of the population turn out to 
be nondominated, ones that have close neighbors in both the variable and the objective space 
are dropped from the list of elites. This process is necessary to create the room for solutions 
that are diverse in both parametric and objective space. 
 

The pseudo code of the Partner Selection process is as follows: 

             End 
If ( 0=γmodgen ) Retrain the Surrogate Model 
End While 
END. 

 

Compute the non-dominated rank of every solution: iRC based on the Constraint matrix 
and iRO based on the Objective Matrix. 
Set of Elites Pop(t)E(t)∈  is formed via the following steps;  

φE(t)←  

iIE(t)← : if 1=iRC  
If size of M/2E(t) >  and size of ME(t) <  
       (i) φE(t)←   

       (ii) iIE(t)← : if ∑
=

≤
M

1j
ji RO

M
1RO  

Else If size of M/2E(t) ≤  
        (i) φE(t)←   

         (ii) iIE(t)← : if ∑
=

≤
M

1j
ji RC

M
1RC  

Else If size of ME(t) = and 1=∑
=

M

1j
jRO

M
1  

         (i) φE(t)←   

         (ii) iIE(t)← : if ∑
=

≤
M

1j
ji CO

M
1OC and ∑

=

>
M

1j
ji CV

M
1VC or vice versa. 

 

• If Number of Feasible Solutions = 0: An indivdual is selected from the Elite List using 
a Roulette wheel selection based on constraint ranks of the Elites.  

• If Number of objectives > 1 and Number of Feasible Solutions > 0: An indivdual is 
selected from Elite List using a Roulette wheel selection based its the crowding rank 
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The pseudo code of the Recombination operator is as follows: 

 
The algorithm presented above, attempts to improve the performance of all individuals of a 
population unlike some evolutionary models where only the good parents participate in 
mating. This behavior on one hand leads to expensive evaluations, while on the other 
provides scope for a wider exploration that is useful for problems that are highly nonlinear. 
The greedy element of the algorithm arises from the stringent elite selection procedure and 
the crossover operator that explores the neighborhood of the elites.  The algorithm is 
particularly attractive as a design tool, since it does not use scaling and aggregation of 
constraints and objectives, and does not require additional inputs unlike most of its 
counterparts. Although the use of nondominated sorting to handle constraints is an expensive 
operation, it is meaningful for problems where the objective and the constraint functions are 
equally or even more expensive. Although this is the basic structure of the algorithm, an 
experienced user can easily modify the selection criteria, fitness assignment mechanism or 
use different recombination operator.  
 
 
2.1 Surrogate Models 
 
Actual Evaluation Model: In this scheme, all neighborhood assessments are obtained using 
actual function evaluations. This is used to compare the accuracy of the RBF and the Taylor 
series based models. 
 
Taylor Series Model: In this scheme, forward differencing using actual function evaluations 

is used to compute 
i

df
dx

and subsequently performance of neighbors are assessed using the 

following: 

,
1

( ) ( ) ( )
N

Neighbor Neighbor i i
i i

dff x f x x x
dx=

= + −∑  
 

(12) 

The number of additional function evaluations is based on the number of variables of the 
problem. 

in the objective space ( iOC ).  

• If Number of objectives = 1 and Number of Feasible Solutions > 0: An indivdual is 
selected from Elite List using a Roulette wheel selection based on objective ranks of 
the Elites. 

 

• Scale every variable between 0-1 using the maximum and minimum value of 
variables in the population.  

• ∑ =
−=

N

1j
j

P
j

P1 )I(ID 2
2 ; N,1,2,j Κ= variables; j

PI 1 denotes the jth variable of the 

Parent (P1) and j
PI 2  denotes the jth variable of the Parent (P2). 

• P is randomly chosen between P1 and P2.  C(i) = P(i) +N(µ = 0, σ ).D ; where σ is 
the variance of the normal distribution, N,1,i Κ= variables. σ=1 has been used in 
this study. 

• Transform C(i)’s back to original scale to get the new child. 
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Radial Basis Function (RBF) Model: In this scheme, neighborhood assessments for 
objective and constraint functions are based on a prediction using a RBF model. The RBF 
model is created using M/2 data sets identified by k-means clustering. (M is the population 
size). The RBF model is retrained every 5 generations and a Gaussian model is adopted 
where the spread is computed using 2 closest neighbors in the variable space. 
 
 
3 Design Examples 
 
3.1 Welded Beam Design  
The first example deals with a well-studied welded beam design problem.  The aim is to 
minimize the cost of the beam subject to constraints on shear stress, bending stress, buckling 
load, and the end deflection. The four continuous design variables are thickness of the beam 
x1, width of the beam x2, length of the weld x3, and the weld thickness x4.. We have used a 
population size of 40 to solve this problem and a neighborhood size of 40. The σ of the 
Gaussian functions were obtained based on average distance of 2 closest neighbors in the 
variable space and a uniform random sampling scheme has been used to generate 40 
neighbors within a range of range of +/- +/-1.0% of the variable range around the design 
point. 

 
Minimize 

)x.(xx.xx.)(f 2432
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The other parameters are defined as follows: 
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where, P = 6000 lb., L =14, δmax =0.25 in, E =30 × 106 psi, G = 12 × 106 psi, τ = max 13,600 

psi, σmax = 30,000 psi, 0.125 ≤  x1  ≤ 10.0, 0.1 ≤  x2  ≤ 10.0, 0.1 ≤ x3 ≤ 10 and 0.1 ≤  x4 ≤ 10.0. 

 
Table 1 Performance Comparison of the Surrogates 

 Scheme 1 Scheme 2 Scheme 3 
Total Number of Actual 
Function Evaluations 490,769 59,885 12,021 

Number of RBF 
Approximations --- --- 479,240 

Total Number of 
Solutions Evaluated 12,009 12,009 12,021 
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Figure 1. Comparison of performance among the surrogate models (Standard deviation is 

based on the surrogate model) 
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Figure 2. Comparison of performance among the surrogate models (Standard deviation is 
based on actual evaluations for the designs in Figure 1) 

 
 

Table 2. Comparison of results obtained using various surrogate models 
 X1 X2 X3 X4 

0.3324 5.7456 7.3185 0.6199 
0.3126 5.9998 7.3665 0.3449 
0.3121 5.9908 7.2088 0.4001 

 
Actual 

0.347 5.6459 7.2228 0.534 
0.2741 6.316 7.9547 0.3674 
0.308 6.4329 7.4903 0.3419 
0.3562 5.4484 6.6113 0.4429 
0.3517 5.1347 7.4686 0.5019 

 
Taylors Series 
Model 

0.3043 5.7871 7.7526 0.3827 
0.3214 5.7324 6.5233 0.5562 
0.5829 6.0147 5.5259 0.7294 
0.6401 3.0474 6.0933 0.6673 

 
RBF Model 

0.5142 6.1407 5.6715 0.679 
 
The results indicate that the Taylor series based model is able to reduce the computational 
cost to about 1/8th while maintaining reasonable accuracy. The RBF model attempting to 
solve the same with 1/5th of the computational cost of the Taylor series model did not fair 
well.  
 
 
3.2 Three Bar Truss Design 
A three-bar truss design problem is considered next. In this problem, the volume is 
minimized subject to stress constraints. We have used a population size of 20 and a 
neighborhood size of 20 to solve this problem.  
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Minimize 
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where, 0 ≤ x1  ≤ 1 and 0 ≤ x2 ≤ 1; l=100 cm, P=2KN/cm2, and σ = 2KN/cm2 
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Figure 3. Comparison of performance among the surrogate models (Standard deviation is 
based on the surrogate model) 

 
Table 3 Performance Comparison of the Surrogates 

 Scheme 1 Scheme 2 Scheme 3 
Total Number of Actual 
Function Evaluations 377,684 53,969 18,003 

Number of RBF 
Approximations --- --- 359,660 

Total Number of 
Solutions Evaluated 18,004 18,003 18,003 
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Table 4. Comparison of results obtained using various surrogate models 

 X1 X2 
0.785391 0.514556 
0.808259 0.37474 
0.789561 0.428947 
0.805721 0.385574 
0.8112 0.384765 

0.782263 0.444663 

 

 

Actual 

0.798286 0.395592 
0.757555 0.781128 
0.802398 0.497857 
0.784544 0.444198 
0.791064 0.53345 
0.800208 0.396092 
0.78419 0.444365 
0.78361 0.4447 
0.783711 0.445021 
0.784083 0.445029 

 

 

 

Taylors Series 
Model 

0.784341 0.436 
0.966621 0.953237 
0.839989 0.480761 
0.812598 0.350402 
0.964367 0.688285 
0.827841 0.339764 
0.873021 0.279326 
0.779782 0.434368 

 

 

 

RBF Model 

0.809088 0.896365 
 

260 280 300 320 340 360 380
0

0.5

1

1.5

Performance

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 P

er
fo

rm
an

ce

Actual Evaluations
Taylor Series Model
RBF Model

 

Figure 4. Comparison of performance among the surrogate models (Standard deviation is 
based on actual evaluations for the designs in Figure 1) 
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It is clearly visible that the Taylor series model did perform fairly well and reduced the computational 
cost to about 1/7th as compared to the model relying on actual function evaluations. The performance 
of the RBF based model using 1/3rd the number of actual evaluations used by the Taylor series model 
is not good. 
 
4. Summary and Conclusions 
 

In this paper, we observed the behavior of two surrogate models namely the Taylor series 
model and the RBF based model within the framework of robust optimal design. The robust 
optimal design problem was formulated and solved using a multiobjective approach where 
the first objective is to maximize performance and the other being to minimize performance 
variance. The neighborhood of a solution was defined using a range and a random sampling 
was used to assess performance variance of the solutions.  
 
Our observations indicate that a simple Taylor series based first order model is able to reduce 
the computational cost substantially while maintaining suitable accuracy for the problems 
studied. The RBF model although quite successful in representing nonlinear functions and in 
our surrogate assisted design optimization framework (SADO), did not perform well for the 
robust design optimization model. The Taylor series model was quite successful as it uses 
neighborhood assessments unlike the RBF model relying on a single global model for 
neighborhood assessments of all solutions. We are currently investigating the performance of 
the Taylor series based model for robust design of airfoils. Other aspects that we are looking 
into include various neighborhood sampling schemes and use of surrogates that rely on both a 
local and a global approximation model.  
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