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Abstract 
CK theory is an interesting and unique theory of design.  This paper introduces ALX3d, a 
formal version of CK based on the action logic ALX3, which is able to represent aspects of 
the actions, preferences, beliefs, and knowledge of collaborating, imperfect agents (such as 
human designers).  It is shown that all the basic notions of CK can be rendered in the logic of 
ALX3d with only one relatively minor change in how the CK terms concept and knowledge 
are defined and related.  Beyond this, ALX3d provides a richer framework for describing 
design activities in formal terms, including alternation between synthesis and analysis tasks, 
and the definition of goals that trade off design requirements against one another.  A case 
study of CK from is used to show how ALX3d can also be used to describe some “real-
world” situations.  The advantages of ALX3d are that they recast CK in a form more readily 
understood by those accustomed to expert, knowledge-based, and formal systems; provide a 
“scientific” vehicle for reasoning about the design activities it can describe; and define a 
possible basis for the development of new, computer-based designers’ aids. 
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1 Introduction 

CK theory [1,2] presents an interesting and unique theory of design, but the available 
literature does not cast CK in a sound logic.  In this paper, the author will demonstrate that 
CK can be captured by an action logic, ALX3.  CK must be adapted to follow the 
conventions of formal systems, but the spirit and benefits of CK are preserved.  Some 
extensions to CK are also presented and related to other work by the author [3].  Having a 
formal representation of CK yields new benefits that will be described. 
Action logics are formal systems that address the activities undertaken by reasoning agents.  
ALX3 [4] is especially well suited because it is the only sound and complete action logic of 
which the author is aware that assumes the agents (i.e. human designers) exhibit bounded 
rationality – they are imperfect reasoners having imperfect/incomplete knowledge (per 
Simon [5]).  CK also assumes bounded rationality. 

The author bases this work on [1].  Each element of CK is translated in turn into ALX3.  
Then, some extensions drawn are added from the author’s own work.  The resulting new 
theory is called ALX3d (ALX3 for design). 

2 Overview of ALX3 

ALX3 is a sound and complete 1st order action logic that incorporates knowledge, belief, 
preference, and action operators to represent the activities of multiple agents working with 
bounded rationality (per Simon [5]).  ALX3 is completely documented in [4].  It assumes the 
usual apparatus of 1st order logic: constants, variables, functions, and relations, conjunction 



(∧), disjunction (∨), negation (¬), material implication (⇒), and universal (∀) and existential 
(∃) quantification over variables.  We also use the notation x ⇔def y to indicate that x is 
defined by y. 

In action logics, an agent is an entity that takes actions to achieve certain states.  An agent a 
can know (Kaψ) or not know (¬Kaψ) a proposition ψ; the agent may also believe (Baψ) or 
not believe (¬Baψ) a proposition ψ.  ALX3 defines knowledge typically for formal systems 
as true, justified belief.  Within the system, knowledge and belief are treated as two separate 
operators related by a definition of the former with respect to the latter.  Other definitions of 
knowledge are possible without necessarily affecting the soundness of the logic.  In the 
language of ALX3, Kaψ ⇔def Baψ ∧ ψ, but ¬(Baψ ⇒ Kaψ).  That is, for a proposition ψ, 
knowledge is equivalent to true, justified belief, but it is not the case that belief implies 
knowledge.  Consider the statement “It rained in Tokyo yesterday.”  The statement is either 
true or false, whether or not an agent knows it.  The agent may believe the statement is true, 
but will not know until the agent takes appropriate actions to verify the belief. 

One might question our definition of knowledge with regards to determining truth.  A belief 
is true if it is true in an absolute sense, which means technically that all we have are beliefs.  
We would have to have access to some omniscient agent to guarantee that true things are in 
fact true.  There are various ways out of this conundrum.  The author prefers to assume that 
truth is determined relative to a context.  So long as the context does not substantively 
change, then the truth of a statement is “guaranteed”.  This is a typical scientific approach: 
until incontrovertible evidence is found that denies a statement assumed to be true, then 
accepting the truth of the statement is considered reasonable.  This has been a working 
principle in science for centuries and appears quite robust. 
The other important difference between knowledge and belief is that knowledge is not 
“forgotten” – once you have it, you cannot lose it (losing knowledge is not the same as 
forgetting it).  Beliefs, on the other hand, can be retracted if a validation activity proves the 
belief incorrect.  This makes beliefs similar to assumptions – statements that we take to be 
true for the sake of achieving some goal until they are demonstrated to be false. 
ALX3 also assumes a many-worlds interpretation based on action logic semantics.  This 
means that the current state (or “world”) is a collection of propositions, and that alternative 
(or future, or past, or just other) states are accessible from the current state through actions 
that cause propositions to be added or withdrawn.  Thus, actions allow one to represent how 
states of knowledge and belief, and the propositions they include, change.  Actions are 
written as 〈a〉ψ, where a is the action and ψ is a proposition that is true in any state that can 
occur because of executing the action.  In other words, 〈a〉ψ means that executing action a 
will make ψ true. 

Associated with actions is the notion of accessibility.  A state t is accessible from another 
state s if there exists an action or a sequence of actions that can be described by propositions 
that are true at t, s, and all intermediate states.  There are two accessibility relations in ALX3.  
Direct accessibility (DA) is defined as DAiψ ⇔def ∃a〈ai〉ψ; that is, agent i can reach a state 
where ψ holds directly from the current state by executing action a.  General accessibility 
(A) is defined as Aiψ ⇔def DAiψ ∨ (DAiφ ∧ (φ∴ψ)); that is, agent i can reach a state where 
ψ holds either directly through one action or indirectly through a sequence of actions (the 
causation operator ∴ is explained below). 

A key feature of ALX3 is a special implication operator to describe causal relations.  Here we 
write it φ∴ψ; that is, in all states that are closest to current state and where φ holds, ψ also 



holds.  A closest state is one that (a) is accessible from current state (i.e. has an action 
allowing an agent to move to it from the current state) and (b) has the smallest possible 
changes from the current state.  The semantics of ALX3 [4] provides a complete formal 
description of this operator, but that is beyond the scope of this paper.  We note that the 
ALX3 causal operator is broader than the usual “scientific” sense of “cause and effect.”  In 
ALX3, cause can arise from simple preference (see below – i.e. something is caused because 
an agent prefers it to an alternative).  It can also capture the relation between dependent and 
independent variables – i.e. the values of a set of independent variables cause the values of a 
set of dependent variables.  As such, a ALX3 causal relation can also be regarded as an 
explanation. 

The sequence of actions that occurs between some initial and final states constitutes a 
process.  ALX3 agents can remember this sequence thereby having knowledge of the history 
of what they have done to attain some goal. 
Finally, agents may sometimes choose to prefer one state to another for no reason that one 
can explain at that moment.  ALX3 supports this with a binary preference operator.  We 
write this as ψPaφ; that is, agent a prefers closest states where ψ is true to closest states where 
φ is true.  Preference is a useful concept because it decouples identifying what agents prefer, 
which one can represent with simple assertions, from the rationale for that preference, which 
can be far more difficult to capture. 

3 Applying ALX3 to design: ALX3d 

The fundamental departure in ALX3d from CK is the notion and application of logical status.  
In CK, only knowledge has logical status.  In CK, concepts are not knowledge and have no 
logical status. 

In ALX3d, on the other hand, we distinguish between the logical status of a proposition and 
whether an agent knows that logical status.  That is, we use belief (a proposition that has a 
logical status not known to an agent) as the equivalent notion. We therefore make the 
following equivalences.  CK’s knowledge space (K-space) contains all propositions “that 
have logical status” [1]; we interpret this as saying that K-space contains all known 
propositions ψ (i.e. Kaψ).  Similarly, CK’s concept space (C-space) contains all propositions 
“that have no logical status” [1]; we interpret this as saying that C-space contains all believed 
propositions φ (i.e. Baφ). 

In CK as in ALX3d, a design is complete when its description is entirely knowledge (no 
beliefs left), KaD (where D stands for the design being developed).  We know the design is 
sufficient because we know it satisfies the requirements (R); in other words, we know the 
requirements imply at least one design, 

 Ka(R⇒D). (1) 

Initially, in ALX3d, we know some of the requirements, KaRi, and may have some beliefs 
about the design, BaDi.  We would also believe that there exists a design that satisfies the 
(final) requirements, Ba(R⇒D).  We would also believe that we could possibly reach that 
state, BaAa(R⇒D).  Both these beliefs are necessary – else why are we even trying to execute 
the design?  We summarise this by saying that the goal of designing is to move from a state 
of belief to one of knowledge.  This is consistent with CK, and we write this as: 

 KaRi ∧ Ba(Di ∧ R⇒D ∧ Aa(R⇒D)) ∴ Ka(R⇒D ∧ D). (2) 



In CK, K-space and C-space include propositions that capture design information.  In ALX3d 
we impose a little more detail.  The requirements R of a design problem is a conjunction of 
individual requirement propositions, R ⇔def ∧iri. R can be a conjunction of different r’s at 
each different state.  Furthermore, a design D is a conjunction of individual design 
propositions, D ⇔def ∧idi.  D can be a conjunction of different d’s at each different state. 

We identify an appropriate design by going from Ba(R⇒D) to Ka(R⇒D).  This is done with 
a validation action where in D is evaluated with respect to R.  (This is a C→K operator in 
CK.)  Once we know R⇒D, then Ka(R⇒D) ⇒ KaD and we know the design too.  That is, we 
know the design is “right” because we have validated it against R. 
We use the causal implication operator in ALX3 to define the following: 

 KaR ∧ BaD ∴ Ka(R⇒D) ∨ Ka(¬(R⇒D)) ∨ ¬Ka(R⇒D). (3) 

This says that in all closest states to the current one, if we know the requirements and believe 
to have a valid design, then one of three conditions holds. 

1. Ka(R⇒D) – The validation was successful and we now know that D satisfies R.  We 
have found a solution. 

2. Ka(¬(R⇒D)) – The validation failed; D does not satisfy R.  D and/or R will have to 
be changed to continue. 

3. ¬Ka(R⇒D) – The validation could not be performed.  This would be the case if either 
R or D were lacking in sufficient detail. 

We will examine these three conditions in further detail below. 
CK’s definition #1 of “design” [1] can now be written as: design is the process of expanding 
R and D to go from Ba(R⇒D) to Ka(R⇒D). 

The CK notion of K-relativity is consistent with ALX3.  If there is no K-space (even if the K-
space is empty), nothing can be done.  R⇒D is evaluated with respect to K-space, which in 
ALX3d is simply the collection of propositions known to agents.  There also exist context 
logics [6] that can further formalize the notion of relativity of knowledge propositions, but 
this is beyond the scope of this paper. 

In CK, “the formulation of the requirements is a first concept formulation which is expanded 
by the designer in a second concept that is called the proposal.”  There is a problem, 
however, if we accept requirements as a concept structure.  We must know at least some of 
the requirements, i.e. know the logical status, because in CK, one can only reason about 
things with defined logical status.  Other requirements may begin as beliefs (in C-space) and 
migrate through design actions to K-space, but we cannot create the design without actually 
knowing (some of) what the product must do (the requirements).  In ALX3d, we can reason 
about beliefs because they are assumed to have a “temporary” logical status.  This means that 
ALX3d is a richer representation than CK, without violating the intention of CK. 
Since CK concepts have no logical status in K-space, and since one needs logical status to 
choose one element from a set, the Axiom of Choice is not used in CK.  This is unwarranted 
in ALX3d.  Beliefs are assumptions regarding the logical status of propositions.  The 
collection of beliefs (the belief structure) allows provisional reasoning.  A belief can be 
retracted, which would then require validating all inferences that include the retracted belief.  
Nonetheless, reasoning is possible.  Therefore, we do not need to exclude the Axiom of 
Choice; indeed, at this time, the author finds no conclusive argument either for or against the 
Axiom of Choice. 



The importance of reasoning about beliefs is an important element of ALX3d that CK does 
not provide.  What designer would pursue a concept he did not believe would be fruitful?  
What company would pursue a product development project that its members did not believe 
would be successful?  Designers cannot wait for the certainty of knowledge (beliefs that are 
verified as true), so they must make assumptions to proceed, and backtrack if those 
assumptions turn out to be wrong.  The belief system support in ALX3d lets us do this. 

In CK, the logical status of concepts is changed by adding or subtracting properties.  In logic, 
we represent properties with propositions.  For example, weight(motor, 5kg) asserts the motor 
has the property of weight with value 5kg.  Description logics [7] provide further depth to the 
logical description of properties and how they can be used to develop ontologies (formal 
descriptions of bodies of knowledge), but this is beyond the scope of this paper. 
Therefore, in ALX3d, we add and subtract propositions that ascribe properties to R and D, 
such that subsequent application of validation actions turn beliefs into knowledge.  From this, 
all four kinds of CK operators (C→C, C→K, K→C, and K→K) translate easily to ALX3d.  
This is explained below. 

Consider the example in [1] about bicycles with pedals and “effective wings.”  “Bicycles 
with Pedals” (denoted by the predicate bp) leads to a ALX3d belief Ba(∃x bp(x)), while 
“Bicycles with Effective Wings” (denoted by the predicate bew) leads to Ba(∃x bew(x)).  
“Bicycles with pedals and effective wings” leads to Ba(∃x[bp(x)∧bew(x)]).  The real question 
is not whether such a design is possible but rather whether R⇒x; that is, does there exist a 
situation wherein a bicycle with pedals and effective wings is appropriate.  If there is no such 
situation, then even considering the issue is vacuous. 

The answer depends on what is known (the content of CK’s K-space).  For example, in a 
dome with an atmosphere on the Moon or some other very low gravity setting, bew(x) might 
be perfectly reasonable.  The reason why bew(x) seems silly is because of the situation 
(context) we assume in the absence of specific knowledge of ⇒.  Context logics [6] and work 
on situated design [8] might also help here, but again this is beyond the scope of the current 
paper. 

Let us now consider some of the CK operators in more detail. 
In CK, K→C operators add or subtract properties written as propositions in K-space to or 
from concepts, creating disjunctions in C-space [1].  This corresponds to the design stage of 
generating alternatives.  These operators expand C-space with elements coming from K-
space.  The disjunction arises from considering that adding a property partitions the set of all 
concepts into those that satisfy the property and those that do not.  Furthermore, C→C 
operators expand or “flesh out” a concept by adding other propositions without logical status. 
In ALX3d, we can add a new design proposition d’ to D: 

 BaD’∴ Ba[D∧d’], or BaD’’ ∴ Ba[D∧¬d’]. (4) 

There is no real distinction in ALX3d between what CK calls K→C and C→C operators, 
because in ALX3d, beliefs have provisional logical status that allows whatever reasoning 
“engine” works on knowledge to work on beliefs as well.  The actions associated with these 
state transitions are actions by which a designer proposes new aspects of a design.  This 
partitions states into those where d’ and those where ¬d’.  This leads to a possible reasoning 
process as follows. 

1. An initial state is assumed of KaR ∧ BaD. 



2. The agent finds that validation cannot be done: KaR ∧ BaD ∴  ¬Ka(R⇒D). 

3. The agent expands D with a new proposition d’: KaR ∧ BaD ∴ KaR ∧ Ba[D∧d’]. 

4. Now, validation fails: KaR ∧ Ba[D∧d’] ∴ Ka(¬(R⇒[D∧d’])).  Since the previous 
validation could not be done, but including d’ causes validation to fail, the only 
alternative left is ¬d’. 

5. The error is corrected: Ka(¬(R⇒[D∧d’])) ∴ KaR ∧ Ba[D∧¬d’]. 

If validation of KaR ∧ Ba[D∧¬d’] cannot be carried out, we know that D∧¬d’ is not a 
sufficient solution and that more expansion must be done to the design (and possibly the 
requirements). 
If the validation in step 4 yielded ¬Ka(R⇒[D∧d’]), we would not be able to choose between 
d’ or ¬d’ because neither led to a completion of the design process.  Alternative courses of 
action here could include (a) seeking a different validation action – since it might be the 
validation action itself that cannot operate on the available information in R and D∧¬d’, (b) 
continuing to pursue both D∧d’ and D∧¬d’ as design alternatives until validation does give a 
distinct answer, (c) changing R and trying to validate again, or (d) arbitrarily choosing d’ or 
¬d’ by means of the designer’s preferences (e.g. d’Pa¬d’).  Changing R is done just as 
changing D, by adding r’ or ¬r’ to give R’ or R’’ respectively. 

If validation of KaR ∧ Ba[D∧¬d’] fails in step 5 above, then neither d’ nor ¬d’ is a suitable 
solution.  This means that there is an error in R, since one of d’ or ¬d’ must be true.  In this 
case, one must use some sort of strategy to backtrack to earlier states until one finds a state in 
the history of changes to R where either d’ or ¬d’ does hold.  Details of such strategies 
constitute future work; here it is sufficient to recognize that such representations are possible 
in ALX3d. 
CK’s restricting partitions correspond to the addition of a proposition known by the agent to 
a design (D’ ⇔def D∧Kap).  Similarly, CK’s expanding partitions correspond to the addition 
of a proposition that the agent believes to a design (D’ ⇔def D∧Bap). 

In CK, the current state can be “backtracked” by returning to a previous state, but the theory 
itself does not formally describe this (for example, by some appropriate operator).  In 
ALX3d, however, we can use belief retraction to formalize backtracking directly.  We can 
write this as D’ ⇔def D\d’ – that is, D’ is like D but without d’.  Backtracking in this manner 
does not apply to knowledge, because it is a principle of action logics that knowledge cannot 
become unknown once it is known.  (Note: this is not the same as backtracking in logic 
programming languages like Prolog.) 

Let us now consider C→K operators, which turn a concept into knowledge in CK.  In 
ALX3d, these are validation actions.  Once a (design) concept becomes knowledge in CK, it 
is a sufficient design solution.  In ALX3d, validation actions validate a belief, turning it to 
knowledge.  As in CK, such actions include conducting mathematical analyses, experimental 
tests, etc.  The only substantive difference is that in ALX3d the key belief that must be 
validated is the implication R⇒D, rather than the design D itself.  In ALX3d, knowing D 
follows from knowing (validating) the implication. 
Finally, CK’s K→K operators expand knowledge space through logical/scientific reasoning.  
Any such operator is available within the 1st-order logic underlying ALX3d. 
Beyond representing the fundamental features of CK, ALX3 provides the descriptive (not 
prescriptive) apparatus to represent other aspects of design activities.  Though discussed in 



detail in a previous publication [3], some of those results are reproduced (in slightly modified 
form) here as potential extensions to a CK-like theory written in ALX3. 

First, we will represent three ways of deciding when to change between tasks that advance 
the design (we shall call these synthesis tasks) and tasks that expand the requirements (we 
shall call these analysis tasks).  We need to do this when the current state indicates an 
incomplete design.  We can write this as 

 Ka(¬(R⇒D)) ⇒ [(R’∧D)∨(R∧D’)]Paψ. (5) 

That is, changing only one of either the requirements or the design is preferred by the agent 
to any other changes.  Furthermore, we use the following abbreviations. 

 RPa ⇔def (R∧D)∧((R’∧D)Pa(R∧D’)), (6a) 
DPa ⇔def (R∧D)∧((R∧D’)Pa(R’∧D)). (6b) 

The first statement means that means that the agent prefers to change the requirements rather 
than change the design, and the second statement means the converse. 

One condition for alternating between synthesis and analysis tasks is that the agent believes 
there are no further activities of the current type (synthesis or analysis) that can be done.  
This can be written with two ALX3d statements: 

 RPa ∧ Ba(¬DAaR’ ∧ R’PaR) ⇒ 〈aa〉
DPa, (7a) 

DPa ∧ Ba(¬DAaD’ ∧ D’PaD) ⇒ 〈aa〉
RPa. (7b) 

Alternatively, we can represent an opportunistic approach [9], in which an agent will change 
between synthesis and analysis as soon as the opportunity to do so presents itself.  We can 
write this as follows. 

 RPa ∧ Ba(DAaD’ ∧ D’PaD) ⇒ 〈aa〉
DPa, (8a) 

DPa ∧ Ba(DAaR’ ∧ R’PaR) ⇒ 〈aa〉
RPa. (8b) 

Finally, we can also represent a situation where changing between analysis and synthesis 
tasks is left to the preference of the designers.  Such changes will occur if the designer is 
currently doing synthesis (or analysis) tasks, has a choice of changing to the other type of 
task, and has a preference to change.  The rationale for the preference is not pertinent in this 
perspective; the agent merely asserts the preference.  We can write this with the following 
two statements. 

 RPa ∧ Ba[(DAaD’ ∧ D’PaD) ∧ (DAaR’ ∧ R’PaR) ∧ (D’PaR’)] ⇒ 〈aa〉
DPa, (9a) 

DPa ∧ Ba[(DAaD’ ∧ D’PaD) ∧ (DAaR’ ∧ R’PaR) ∧ (R’PaD’)] ⇒ 〈aa〉
RPa. (9b) 

All three approaches shown above can occur at different points in the same design process 
and indicate the conditions that must logically exist for designers to undertake certain actions.  
It does not prescribe the actions to take; it only indicates when opportunities for certain 
actions exist.  In “real life,” there are many other possible guidelines that can be represented; 
which ones are available in fact will vary from one design situation to the next. 

These kinds of guidelines relate to CK in that they show some of the conditions under which 
expansive partitioning (of the design space) versus restrictive partitioning can occur.  Put 
another way, the guidelines can help designers recognize opportunities to change (and 
hopefully improve) the way they design, but the guidelines do not enforce any one kind of 
design process. 



A second feature of ALX3d is its capacity to represent some kinds of design principles, such 
as minimizing the number of parts in a design.  Details of the representation are given in [3]; 
here we will review the results and indicate how it relates to CK.  Many early design 
activities are based on trading off values for different variables based on the preferences of 
designers.  Achieving such goals is a human activity, but defining these trade-off goals can be 
written in ALX3d as follows. 

Let x, y, and z be three designs.  Let φ(d) and ψ(d) be functions that map a design d to the 
value of some characteristic of the design; e.g. the number of parts in design d could be 
written np(d). 

 Gt[φ(x)] ⇔def φ(x)Paφ(y) ∧ φ(x)∴ψ(u) ∧ 
Ba[ ¬∃z (φ(z)Paφ(x) ∧ φ(z)∴ψ(v) ∧ ψ(u)Paψ(v) ], (10a) 

 φ(x)Paφ(y) ⇒ Ba(xOφy). (10b) 

The first statement defines a trade-off goal for the value of some characteristic φ (e.g. number 
of parts) of a design x thus:  an agent prefers designs where φ(x) to design where φ(y), so 
long as the designer believes that more φ-preferred designs are such that some other 
characteristic ψ (e.g. size, weight, manufacturability, etc.) will obtain a less preferred value.  
The second statement gives a physical basis for the agent’s preference, by associating 
preference with a belief in a partial ordering Oφ with respect to the characteristic φ.  Indeed, 
the second statement indicates a rationale for the preference used in the first statement.  We 
note that the rationale is strictly a one-way implication; that is, while a preference implies a 
belief, the belief does not imply a preference. 

For example, then, the principle of preferring the lowest possible number of parts can be 
written by substituting < for Oφ and some predicate np(d) for φ, such that np(d) is the number 
of parts in design d.  The rule then captures the notion that a designer will seek to lower the 
part count only until doing so will cause some other characteristics ψ (e.g. manufacturability) 
to obtain a non-preferred value. 
The partial ordering need not be a conventional mathematical one such as <; it can be any 
ordering that can be represented in 1st-order logic, including variants such as fuzzy logic, 
without detracting from the logical soundness of the first statement.  In fact, we can omit the 
partial ordering altogether, so long as the design agents can assert the appropriate 
preferences. 

This demonstrates only one of many kinds of goals that can be represented by ALX3d.  The 
author is currently studying other kinds of goals.  The point of this presentation is to 
demonstrate that one can submit a CK-like theory of designing to logical representation. 

4 An example 

In [10], Hatchuel et al present examples of the application of CK theory.  In this section, the 
author will discuss how ALX3d can achieve at least the same level of description as CK.  We 
will use one of the examples in [10]: the design of a new chemical (Mg-CO2) rocket motor 
for use in Mars exploration missions.  In [10], the case study is divided into four phases; we 
will also follow this layout. 
The initial state (Phase 0) is the proposal that a Mg-CO2 engine would be “better” than the 
conventional solution.  Per [10], we label this proposal C0.  In CK, the proposal is a concept 



because it has no logical status.  In ALX3d, the proposal is a belief, a statement that we 
assume to be true and then reason with it until we can either prove or disprove it.  We write it 
as BaC0. 
In Phase 1 of the case study, an attempt was made to use the Mg-CO2 concept for a sample 
return mission to Mars (labelled A1 in [10]).  We would write this as Ba(C0∧A1).  An 
“evaluation” was then carried out by comparing the new motor to existent ones with respect 
to the criterion of minimum landed mass on Mars.  This constitutes a validation action in 
ALX3d.  It was found that the new motor failed the validation.  In ALX3d as in CK, this only 
means that Ka¬(C0∧A1).  As in CK, and by the fundamental properties of 1st-order logic, 
this does not necessarily imply that ¬C0.  So we can preserve our core belief, BaC0, by 
contending that Ba¬A1, which would account for the validation result.  The new belief is 
then Ba(C0∧¬A1).  Note that in CK, it is assumed at this point that A1 is false; i.e. that the 
new motor will not work for a sample return mission.  This is in fact incorrect; all we can 
infer logically is that we believe the Mg-CO2 motor will not work in this kind of mission 
because all we know is that the combination C0∧A1 will not work.  At this point, CK would 
have us accept the validity of our main proposal C0, but the whole point of the exercise is to 
determine if the concept has any merit at all.  We see then that ALX3d is more expressive of 
the actual state of affairs in this case. 

In Phase 2 of the case study, it is reported that a study conducted of mission profiles 
excluding sample return missions (i.e. Ba(C0∧¬A1)) yielded no positive results, but that this 
was due to an excessive number of attributes placed on the problem during evaluation.  It is 
also suggested that CK provides a key insight here – that those excess attributes must be 
removed in order to discover other possible solutions.  However, the current author has been 
unable to find a clear indication of how CK itself accommodates this.  Indeed, the current 
author contends that this is a feature of an ontological representation of design problems as a 
composition of facts.  This is how logic works in general, and is not a feature particular to 
CK.  There is an old adage: always question your premises.  In this case, the premises are the 
“excess” attributes.  Questioning them involves determining whether they are necessary or 
simply accepted by fiat, convention, or error. 
In the case of the Mg-CO2 motor, it is evident that all scenarios had at least one key attribute 
in common: that the motor would be used during the transit to Mars.  This is the premise that 
is questioned in [10].  In fact, then, the belief (the CK concept) Ba(C0∧¬A1) was interpreted 
incorrectly because the premise of using the motor in transit is not part of the concept; that is, 
A1 (use for sample return missions) does not necessarily imply use in transit.  Formally, we 
could have written in ALX3d Ba(C0∧¬A1∧A1’) where A1’ stands for “using the motor in 
transit.” 

The logical alternative here, regardless of the use of CK or ALX3d, is to use the complement 
of the premise: use the Mg-CO2 motor for purposes other than the transit to Mars.  
Practically, this is equivalent to using the motor on Mars, labelled A2 in [10], which we can 
represent in ALX3d as Ba(C0∧A2), so long as we also accept that A2⇒¬A1. 

One may then continue through the case study, identifying four other attributes that constitute 
possible uses of the Mg-CO2 motor on Mars: A3 – “used for mobility,” A4 – “unplanned 
mobility,” A5 – “emergency lift-off,” and A5’ – “additional distance.”  The systematic 
appearance of these alternatives follows from the use of CK only insofar as CK implies the 
use of breadth-first searches, which is our only logical course of action.  A new concept is 
then specified in [10], which can be written in ALX3d as Ba(C0∧A2∧A3∧A4∧A5).  
However, there is a problem here.  Technically, both this statement and its CK variant mean 



that the agent believes an appropriate design is a Mg-CO2 motor used for unplanned 
emergency lift-off mobility on Mars; that is, the mission involves the simultaneous 
occurrence of A2 through A5, because of the use of conjunctions. 
The current author believes the intention was that the new motor could be used in any 
combination of the situations denoted by A2-A5.  At very least, a disjunction should have 
been used, i.e. Ba(C0∧(A2∨A3∨A4∨A5)), to correctly represent that any of A3, A4, or A5 
could constitute an appropriate use of the Mg-CO2 motor.  However, not even this is the best 
possible representation, because three important facts are missing: (a) that A2 is a 
generalisation of A3-A5, (b) that A3 is a generalisation of A4 and A5, and (c) that some 
design activities occurred to get from A2 to A3 and then to A4 and A5. 
The current author therefore suggests the following ALX3d representation for situation 
reported in [10]: 

 ((Ba(C0∧A2)∴BaA3)∴BaA4)∴Ba(A5∨A5’). (11) 

This statement captures a great deal about the situation: 
1. Initially, the agent believes the Mg-CO2 motor is a viable alternative for use on Mars 

(C0∧A2). 

2. There is a causal relation leading from “use on Mars” to “mobility on Mars” (A3). 

3. To achieve A3, there must exist some design action (the “conceptual expansion” in CK 
theory) that moves the agent there.  This is a human cognitive act connecting a means (the 
motor) to a desirable capability (mobility). 

4. Similarly, once the agent believes A3, there is an expansion action that will lead the agent 
to a new state where the mobility is unplanned (A4). 

5. Finally, once the agent is in a state of believing A4, there is an expansion action that will 
lead the agent to believe either emergency lift-off or additional distance (A5 or A5’) as 
alternatively suitable situations. 

We note that once we reach a state where A5 or A5’ is true (and only in such states), then we 
can also say that Ba(A5∨A5’)⇒A4⇒A3⇒A2, which gives a causal chain back to the 
original propositions.   Again, this demonstrates that ALX3d provides a richer representation 
than CK, while remaining consistent with the intent and general principles of CK. 

Finally, in Phase 3 of the case study, a comparison of the Mg-CO2 concept and an alternative 
design, the ExoMars Rover, is reported.  The concept used is that of Mg-CO2 combustion for 
unplanned mobility on Mars.  (Note: A5 and A5’ are not used.)  The ExoMars performance 
constraints are given as (a) motor weighing less than 60kg, (b) mission life of no more than 
180 days, (c) maximum power consumption of 200W, and (d) minimum 10km range.   These 
constraints are used to limit a performance domain that the Mg-CO2 concept must satisfy.  
Based on existent knowledge (e.g. principles of rocket propulsion), two key design 
parameters for the Mg-CO2 concept are discovered: motor mass (mm), and mass of the CO2 
acquisition plant (mp).  These two parameters can be used to calculate values for performance 
characteristic of lifetime (t), power (p), and range (r). 

The values of the parameters are found to exist within a bounded domain; any value set 
within the domain constitutes a possible solution, i.e. where the Mg-CO2 motor concept can 
compete against the ExoMars alternative.  The authors argue [10] that this opens up new 
possibilities for mission concepts and design alternatives that would not have been noticed 
otherwise. 



Phase 3 is described in [10] using text and diagrams, and it is not necessarily clear what 
activities derived from CK versus the use of rational, logical reasoning in general, or 
innovative thinking about the problem.  No matter which is actually the case, the current 
author will show that stages of development that occurred in Phase 3 can be represented 
directly in the language of ALX3d and consistently with CK. 
First, let Δψ be true only for design concepts.  We would therefore assert ΔC0 to mean that 
C0 is a design concept.  The set of all known design alternatives satisfying some propositions 
ψ is given in ALX3d by: 

 Da(ψ) ⇔def {x: KaΔx ⇒ Baψ}. (12) 

The agent knows that Δx because the agent asserted it.  Note that KaΔx does not imply Kax; 
that is, knowing that we believe a thing is different than knowing the thing itself.  For 
example, consider the previous example of bicycles with pedals and effective wings.  Let B0 
be “bicycle”, P1 be “with pedals”, and P2 be “with effective wings”.  Furthermore, assume 
we were interested in finding alternatives that have wings (P2) to “bicycles with pedals” 
(B0∧P1).  The set of alternatives is given by Da(P2)⇔def{x: KaΔx ⇒ BaP2}, which would 
include bicycles with pedals and any other design concept satisfying “with effective wings.”  
Alternately, Da(P1)⇔ def {y: KaΔy ⇒ BaP1} would contain the alternatives to bicycles with 
effective wings that also satisfy “with pedals.” 

Now, let C1⇔def C0∧A2∧A3∧A4; i.e. C1 is the concept of using Mg-CO2 motors for 
unplanned mobility on Mars.  The designer can assert ΔC1 as a possible design.  The 
designers’ state thus includes BaC1.  To look for alternative concepts, we need to identify 
concepts that involve A2-A4 – all cases of unplanned mobility on Mars.  We can write this as 
C1\C0, i.e. C1 as defined, but without C0.  Now the set of all design alternatives is just: 

 Da(C1\C0) ⇔def {x: KaΔx ⇒ Ba(A2∧A3∧A4)}. (13) 

Da(C1\C0) includes all the design concept alternatives to C1.  To gather these alternatives, 
the designers began with a belief C1, and did the appropriate research (a C→K operator in 
CK) to find the design alternatives Da(C1\C0).  We can represent this as a causal relation in 
ALX3d: BaC1∴Da(C1\C0) ∨ ¬Da(C1\C0) – that is, every subsequent state following the 
search for design alternatives is one that either definitely does or does not have such 
alternatives. Obviously, to continue the case study, we must assume that Da(C1\C0) is in fact 
the case. 

One might ask: is there some feature of a state where BaC1 that draws the agent to look for 
alternatives?  The original case study [10] only states “…the prototype should overcome the 
rover solution for the next known missions….” At this time, the current author can only 
propose that setting a goal of comparing concepts to alternatives is an extralogical design 
principle.  This activity may be a part of a validation action; that is, it is one way to determine 
if a design concept has merit.  This might suggest an axiom (a statement accepted as true but 
not provable within a logic) for ALX3d, but setting out exactly what this axiom might be 
remains an item for future study. 

We are now ready to describe this phase of the case study in ALX3d.  Let the design 
parameters P for the Mg-CO2 motor be mm and mp.  Let the (possibly vague) values of the 
design parameters be written as functions mapping a design to a parameter value: mm(d), 
mp(d).  Let the performance metrics of any designs: M ⇔def {p, t, r} (power, lifetime, range).  
The (possibly vague) values of metrics can be written as functions p(d), t(d), and r(d) for a 
design d. 



The metric values are caused by the parameter values.  That is, the case study model 
described above indicated that p, t, and r were dependent values, and mm and mp were the 
independent values.  In ALX3d, this is written: 

 ∀d[[mm(d) ∧ mp(d)] ∴ [p(d) ∧ t(d) ∧ r(d)]]. (14) 

Furthermore, the values can be partially ordered, e.g. p(x)Opp(y) for different designs, where 
Op is a generalised ordering operator (like >) on characteristic p.  The ordering may involve 
imprecision e.g. fuzzy or interval math. 

Constraints were defined in the case study based on knowledge of rocketry and physics.  Let 
the constraints be written as: p (200 W), t (180 d), r (10 km).  Therefore, a condition for a 
satisficing design [5], p(d)<p ∧ t(d)<t ∧ r(d)>r.  We can now write a satisficing goal for the 
Mg-CO2 concept C1 as a belief in a causal relation.  Since the design is only a concept, we 
cannot know this satisficing relation, but only believe it.  In ALX3d, we can write a 
satisficing goal for this case as: 

 Gs[C1] ⇔def Ba[[mm(C1) ∧ mp(C1)] ∴ [p(C1)<p ∧ t(C1)<t ∧ r(C1)>r]]. (15) 

This statement essentially captures the domain of possible values for the identified design 
parameters such that any design that satisfies this statement is a possible solution. 
We can also go beyond the case study somewhat by considering a way to find the best design 
within the domain of satisficing solutions given by Gs[C1].  Given two designs C2 ⇔def 
C1∧x and C3 ⇔def C1∧y that both satisfy Gs[C1], we can use the formalism of trade-off 
goals in Section 3 to capture the agent’s preference for one satisficing design over another.  
Given C2 and C3 as defined above, and letting u, v, and z be other satisficing designs in 
Gs[C1], and letting φ and ψ stand for any two of the metrics, we can write the following. 

Gt[φ(C2)] ⇔def [φ(C2)Paφ(C3)] ∧ [φ(C2)∴ψ(u)] ∧ 
Ba[ ¬∃z (φ(z)Paφ(C2) ∧ φ(z)∴ψ(v) ∧ ψ(u)Paψ(v) ], (16a) 

 C2PaC3 ⇒ Ba[φ(C2) Oφ φ(C3)]. (16b) 

This says that C2 is preferred to C3 if C2 attains a “better” value of one of the metrics (φ) 
than does C3, and doing so will not limit finding a more preferred value for one of the other 
metrics (ψ). 

We have now developed a new model of the case study in [10] that is grounded far better in a 
formalism of design activities than CK can provide. 

5 Potential benefits of ALX3d 

In Section 3, the author introduced ALX3d, a formal theory of design activities built upon the 
action logic ALX3, and designed to account for the key features and intent of CK theory.  In 
Section 4, a case study from the existent CK literature was reworked in ALX3d to 
demonstrate its representational richness. 

This work in no way invalidates CK.  Rather, it demonstrates that the fundamental premises 
of CK are reasonable premises regarding the act of designing; namely, that there is an 
important difference between knowledge and concepts, and that a rational (logical) process 
can describe (but not necessarily explain) at least some parts of the act of designing.  ALX3d 
also demonstrates the power of logical systems to capture essential aspects of design 



processes, especially the decisions that designers must make based not only on knowledge 
but also on their beliefs and preferences. 

ALX3d is a research tool, not something to be used by practicing designers.  However, 
continued development of theories in mathematics and the sciences have often let eventually 
to practical benefits for designers.  It is reasonable to assume the same could happen with 
logical theories like ALX3d and CK.  As ALX3d matures, it will be possible to use it for 
several purposes in this regard, some of which include the following. 
Appeal to formal systems researchers.  CK theory, which has distinct benefits as a design 
research tool, is somewhat hindered because it does not conform to conventions of formal 
systems.  ALX3d maintains the intent and basic principles of CK while casting it in a form 
more readily understood by those with grounding in formal systems.  As such, ALX3d makes 
CK theory more appealing to the community of design researchers who understand and use 
formal systems, including researchers in artificial intelligence, computer science, and 
cognitive science. 

Reasoning about documented design processes.  Assuming a complete description of a 
design process as documented either in industry or the literature can be constructed (and the 
author currently believes this is entirely possible), then the description can be reasoned about 
using the inference rules that are built into ALX3 to study the process, and find and address 
its problematic aspects.  This would significantly advance our understanding of the nature of 
engineering design. 

Construction of new design processes.  It may well be that in the natural course of 
analysing design processes, new process descriptions may arise that could significantly 
improve the design capability of a group of designers. 
Construction of new computer-based design aids.  Logical systems are well-suited to 
implementation in computer tools.  It should be possible to use ALX3d to develop new 
design applications of artificial intelligence and knowledge-based systems.  Such systems 
may also yield significant advantages for practicing designers. 

6 Conclusion 

ALX3d, a formal version of CK theory based on the action logic ALX3, is introduced.  
Beyond what is currently possible with CK, ALX3d leverages ALX3 to provide a richer 
framework for describing design activities in formal terms.  While adding support to the CK 
approach, ALX3d also demonstrates the potential benefits of using formal systems in design 
research.  Although ALX3d is still being developed, there are strong indications, as 
demonstrated in this paper that it may be a useful tool for design research. 
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